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Sensitivity to visual numerosity has previously been shown to predict human mathematical performance.
However, it is not clear whether it is discrimination of numerosity per se that is predictive of mathemat-
ical ability, or whether the association is driven by more general task demands. To test this notion we had
over 300 participants (ranging in age from 6 to 73 years) perform a symbolic mathematics test and 4 dif-
ferent visuospatial matching tasks. The visual tasks involved matching 2 clusters of Gabor elements for
their numerosity, density, size or orientation by a method of adjustment. Partial correlation and regres-
sion analyses showed that sensitivity to visual numerosity, sensitivity to visual orientation and mathe-
matical education level predict a significant proportion of shared as well as unique variance in
mathematics scores. These findings suggest that sensitivity to visual numerosity is not a unique visual
psychophysical predictor of mathematical ability. Instead, the data are consistent with mathematics rep-
resenting a multi-factorial process that shares resources with a number of visuospatial tasks.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license. 
1. Introduction

Newborn babies are sensitive to the number of elements in a vi-
sual display: following habituation to a stimulus newborns fixate
longer – a measure of attention, and by inference, perceived nov-
elty – when the number of elements present is changed (Antell &
Keating, 1983). Further, newborns will preferentially gaze at a vi-
sual stimulus that matches an auditory sequence with respect to
the numerosity of component visual objects and auditory events,
implicating a role for an innate and abstract representation of
numerosity that is independent of sensory modality (Izard et al.,
2009). As the infant develops, sensitivity to numerosity improves
such that by 10 months they are capable of discriminating 8 from
12 objects (Xu & Arriage, 2007; Xu & Spelke, 2000). According to
one group of theories, this preverbal sense of numerosity, which
developmentally and anthropologically precedes the acquisition
of verbal counting (Feigenson, Dehaene, & Spelke, 2004; Pica
et al., 2004), represents the foundation upon which subsequently
acquired symbolic and mathematical skills are built (Barth et al.,
2005; Gilmore, Mccarthy, & Spelke, 2007; Gilmore & Spelke,
2008). However, there is considerable debate as to precisely how
this mapping between representations is established (Carey,
2009; Gallistel, 2007, 2011; Gelman & Butterworth, 2005; Le Corre
& Carey, 2007).

There are several strands of evidence to support a close associ-
ation between non-symbolic numerosity, symbolic number and
formal mathematics (Dehaene, 1992). When number–words are
mastered number-comparisons based on symbolic information
(‘‘which is greater: 3 or 7?’’) and non-symbolic information (‘‘are
there more blue dots or yellow dots?’’) activate common brain re-
gions in the intraparietal sulcus (IPS; Eger et al., 2003; Piazza et al.,
2007; Pinel et al., 2004; Venkatraman, Ansari, & Chee, 2005). Par-
ticipants also show near-identical response patterns for symbolic
and non-symbolic number comparison tasks: responses are less
precise and slower for the comparison of large numbers (the size
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effect) and for numbers that are relatively similar in magnitude
(the distance effect) (Buckley & Gillman, 1974; Dehaene, Dehae-
ne-Lambertz, & Cohen, 1998; Moyer & Landauer, 1967).

There is also considerable variation between subjects with re-
spect to the precision of numerosity judgements. Further, this var-
iation has been shown to retrospectively predict mathematical
performance (Halberda, Mazzocco, & Feigenson, 2008). In a study
of 14-year-old children, Halberda and colleagues showed that chil-
dren who were sensitive to differences in visual numerosity tended
to have performed well at mathematics. Similar correlations be-
tween performance on visual numerosity and mathematics tasks
have since been demonstrated in younger (3–6 year old) children
(Gilmore, Mccarthy, & Spelke, 2010; Libertus, Feigenson, & Hal-
berda, 2011) as well as adults (Halberda et al., 2012), although in
the latter study mathematical ability was primarily inferred on
the basis of self-report. [See Inglis et al. (2011) however, for a fail-
ure to find such an association in adults.] A link has also been dem-
onstrated between mathematical learning difficulties (Landerl,
Bevan, & Butterworth, 2004) and poor performance on visual num-
erosity tasks (Mazzocco, Feigenson, & Halberda, 2011; Piazza et al.,
2010).

Whilst several of these studies have attempted to control for the
contribution of cognitive factors common to all tasks, e.g. visual
working memory (Halberda, Mazzocco, & Feigenson, 2008; Maz-
zocco, Feigenson, & Halberda, 2011), participants have not been
tested using comparable methods on tasks that involve judge-
ments along other visuospatial dimensions (e.g. size or density).
Consequently, it is not clear if it is the discrimination of numerosity
per se that predicts mathematical performance, or whether the
association is driven by other components of the task, e.g. visuo-
spatial attention. To address this issue we tested the hypothesis
that sensitivities on other visuospatial tasks are predictive of math-
ematical performance. Over 300 participants performed a timed
computer-based mathematics test followed by 4 visuospatial
matching tasks in which 2 patches of Gabors had to be adjusted
to match one another with respect to their numerosity, density,
size or orientation. Our findings confirm a robust association be-
tween mathematics scores and visuospatial sensitivity, but are
inconsistent with this connection being specific to visual numeros-
ity: after accounting for the effects of age and general education le-
vel, both orientation and numerosity thresholds (as well as
mathematical education level) were predictive of mathematics
scores.
Fig. 1. Example stimuli. (A) Orientation, (B) size and (C) numerosity or density
tasks.
2. Material and methods

Three hundred and thirty-seven participants were recruited at
the Science Museum in London on a voluntary basis. Full datasets
were gathered on 311 of these (188 male, 6–71 years of age with a
mean and standard deviation of 28 ± 14.85 years). All gave in-
formed voluntary consent in accordance with the Declaration of
Helsinki.

During a single 30 min testing session participants completed
(in order): (1) a questionnaire cataloguing personal details includ-
ing age, gender, handedness, maximum general and mathematical
education level reached; (2) a timed mathematics test; (3) a series
of visuospatial matching tasks. General education level was self-
scored as an ordinal response (0 = None, 1 = School, 2 = College,
3 = Undergraduate, 4 = Postgraduate). Mathematics education level
was scored similarly (0 = None, 1 = GCSE, 2 = A level, 3 = Under-
graduate, 4 = Postgraduate). All tests were administered under
the supervision of one of the authors or a trained postgraduate
assistant. The testing space was a large, secluded room, which
was normally lit. Up to 4 participants could be tested at any one
time since 4 separate testing ‘stations’ were available for use.
2.1. Mathematics test

Mathematical ability was assessed using a computer-based
multiple-choice test adapted from the Mathematics Calculation
Subtest (WJ-Rcalc) of the Woodcock–Johnson III Tests of Cognitive
Abilities (Woodcock & Johnson, 1989). Participants were presented
with a series of problems that increased in difficulty from simple
addition and subtraction through to multiplication and division
of fractions and negative integers. Up to 25 problems could be
undertaken, depending on the participant’s performance (see be-
low). These were divided into 5 levels, each of which consisted of
5 problems. On each trial the problem was presented in numeral
format (e.g. ‘‘5 + 7’’) and participants were required to select the
correct answer from 4 possibilities (see Supplementary Table 1).
No feedback was given. Although response times were recorded,
these were not used in the analysis. Participants were given 30 s
to respond to each problem, with an icon in the top left-hand cor-
ner of the screen indicating the proportion of time remaining on
each trial. Failure to respond in the allotted time or selection of
an incorrect response (by mouse click) resulted in an error being
recorded. An error on 2 sequential levels, or 2 errors on a single le-
vel, resulted in termination of the test. The dependent variable was
the total number of correct answers given, with 25 being the max-
imum possible score.
2.2. Visuospatial matching tasks

Two patches of oriented Gabor elements were presented to the
left and right of screen centre (Fig. 1). Participants used a mouse to
adjust the patch on the right (the test) so that it matched the
appearance of the patch on the left (the reference) for a given
parameter (orientation, size, numerosity or density). Moving the
mouse upwards increased the test parameter value (e.g. the size
of elements); moving downwards decreased its value, except for
the orientation task, in which upwards and downwards motion
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mapped onto clockwise and anti-clockwise rotation, respectively.
Participants were instructed to click when they could no longer
distinguish the two patches with respect to the parameter of inter-
est. To avoid biasing responses through hysteresis (the tendency
for a participant’s response to lag behind their perception of a
change in stimulus) the initial test patch parameter was chosen
at random from the full range of possible test values, thereby ran-
domizing the direction of adjustment. (See Section 2.3 for details of
the range of possible test values.) In addition, participants were in-
structed to hover back and forth about their perceived match point
(to ensure a good match) before clicking to indicate a response.
This was repeated 4 times per condition and blocked by task in a
pseudo-random order. [Note: Visual thresholds calculated using a
small number of method-of-adjustment trials (5) and a much
smaller population sample (n = 50) have previously been shown
to provide good test/retest reliability and closely concur with par-
allel measurements made using a 2-alternative forced choice par-
adigm (Higgins et al., 1988).] At the start of each block the task
to be performed was cued and corresponding instructions given.

2.3. Stimulus parameters

Stimuli were generated in the Matlab programming environ-
ment (MathWorks, Cambridge, MA) using the Psychophysics Tool-
box extensions (Brainard, 1997; Pelli, 1997) and were presented on
the luminance-calibrated LCD display of an iMac computer at a
spatial and temporal resolution of 1920 � 1080 and 60 Hz respec-
tively. Reference and target patches were comprised of a variable
number of odd-symmetric-phase, non-overlapping, maximum-
contrast Gabor elements presented on a grey background. For the
reference patch, the location of each Gabor was updated every sec-
ond from a random sample of coordinates to prevent participants
serial-counting. The position of the elements in the target stimulus
did not change, except when the mouse was moved; this led to a
re-sampling of element locations.

For tasks 1 and 2 (orientation and size) reference and target
patches had a diameter of 10 deg at a viewing distance of 70 cm.
For tasks 3 and 4 (numerosity and density) the reference and test
had diameters of 10 deg and 7 deg respectively (half an octave dif-
ference), thereby decoupling number and density cues (Tibber,
Greenwood, & Dakin, 2012). The standard deviation of the Gauss-
ian envelope of the Gabors was fixed at 4.5 arcmins along its longer
axis and 3.2 arcmins along the orthogonal axis, except in the size-
matching tasks, in which the envelope size varied. The sinusoidal
carrier grating typically had a spatial frequency of 5 cycles per de-
gree, but scaled with envelope size in the size task. Gabors were
semi-randomly oriented within a range that excluded all angles
within 15� of cardinal axes (horizontal/vertical), thereby avoiding
the pooling of data from cardinal and oblique axes. The reference
and target patch consistently contained 64 elements, except in
the size matching condition, in which there were 32 to prevent
range restrictions when larger elements were introduced, and the
numerosity/density tasks, in which numerosity varied.

The baseline reference level for the parameter of interest in any
task (e.g. numerosity in the numerosity matching task) was de-
fined by the standard element described above [n = 64, r = 4.5
arcmins, randomly orientated (with constraints)]. However, this
baseline was randomly jittered from trial to trial by 0.125 octaves
in order to encourage participants to attend to the reference patch
rather than rely on an internal standard (Morgan, Watamaniuk, &
Mckee, 2000). With respect to the possible range of values that
the test stimulus could be moved through: for the orientation task
the test orientation ranged between 0� and 180�; for numerosity
and density tasks the test numerosity ranged between 2 and 288
elements; for the size task the Gaussian envelope of the Gabors
ranged between 0.7 and 12.7 arcmins along the longer axis.
2.4. Data analysis

For each task the standard deviation of the perceptual match
points (one per trial) provided an estimate of the reliability of
the participant’s responses [threshold or Weber fraction (w)]. This
represents an estimate of the noise in an individual’s underlying
numerosity representation. It is thus formally equivalent to w as
estimated by fitting a single-parameter model to behavioural data
describing the change in percent correct as a function of increasing
numerosity ratio, as used, for example, by Halberda, Mazzocco, and
Feigenson (2008). Lower values indicate better performance. All
psychophysical thresholds and age data were log transformed, as
this reduced the skewness and kurtosis of their underlying distri-
butions. These were converted into Z-scores so that psychophysical
data could be filtered identically: values >3 Z-scores from the mean
were excluded from analyses. This led to the removal of 4.5% of the
data. Analyses were carried out using SPSS statistical analysis soft-
ware (version 18.0; SPSS Inc., Chicago, IL).
3. Results

3.1. Visuospatial task performance

In Fig. 2 log transformed Weber fractions and thresholds (orien-
tation task) are presented for the 4 visuospatial tasks along with
the distribution of participants’ ages. Estimates of group means
were derived by taking the parameter l of a Gaussian distribution
fit to the log transformed data: orientation (5.12�), size (0.05),
number (0.21) and density (0.29). These values are broadly consis-
tent with the existing literature. For example, whilst we report a
group mean Weber fraction of 0.21 for numerosity judgements,
previous reports in adults (obtained using a range of experimental
paradigms and stimuli) typically range from 0.1 to 0.28 (Burr &
Ross, 2008; Dakin et al., 2011; Halberda, Mazzocco, & Feigenson,
2008; Piazza et al., 2010; Pica et al., 2004; Ross & Burr, 2010; Tib-
ber, Greenwood, & Dakin, 2012). Thus, we can assume that the
method of adjustment employed here provides a reasonable esti-
mate of the population’s performance.
3.2. The effects of gender and age on performance

In Fig. 3 task performance is plotted as a function of age for both
male and female participants. Visuospatial Weber fractions/thresh-
olds were analyzed in a repeated-measures analysis of variance
(ANOVA), with 2 between-subjects factors (gender, at 2 levels,
and age, at 10 levels) and one within-subjects factor (task, at 4 lev-
els). The width of age bins selected and the number of participants
per bin (in brackets) were as follows: 6–11 (n = 37), 13–17 (n = 33),
18–23 (n = 86), 24–29 (n = 46), 30–35 (n = 28), 36–41 (n = 19), 42–
47 (n = 20), 48–53 (n = 16), 54–59 (n = 12), P60 (n = 14). All bins
were of equal width, with the exception of the last: this captured
all participants over 60 years of age. This was deemed appropriate
as to subdivide this group further would have resulted in extre-
mely small sample sizes. Analyses undertaken revealed no main ef-
fect of task (F(3,831) = 0.29, P = 0.83), but a significant main effect of
age group (F(9,277) = 6.5, P = 2.15 � 10�8) and gender
(F(1,277) = 24.38, P = 1.37 � 10�6), with no significant interactions.
An ANOVA for the mathematics scores revealed an identical pat-
tern with main effects of age (F(9,277) = 5.59, P = 4.27 � 10�7) and
gender (F(1,277) = 11.33, P = 8.69 � 10�4), but no interactions. Fur-
ther tests revealed that these findings reflected superior perfor-
mance amongst the male participants and an improvement, i.e.
lower thresholds and higher mathematics scores, with age (see
Supplementary Table 2).



Fig. 2. The distribution of log transformed thresholds/Weber fractions and ages. Dashed lines show best-fitting Gaussian functions.
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3.3. Partial correlations with mathematics scores

To determine whether visuospatial task Weber fractions/
thresholds correlated with mathematics scores (Fig. 4) we
undertook partial correlations between these variables whilst con-
trolling for the effects of age. This was deemed appropriate since
age itself correlated highly with performance on several tasks
(see Supplementary Table 2). Resulting correlation coefficients



Fig. 3. Effects of age and gender on visuospatial and mathematics tasks. Higher (positive) scores represent poorer performance for all tasks except mathematics. For the
purposes of graphical presentation and analyses, group data were split by gender and age. See text for further details.
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were all negative: participants who performed well on the sym-
bolic mathematics test tended to have higher Weber fractions/
thresholds for orientation (R = �0.24, P = 2.6 � 10�5), size
(R = �0.12, P = 0.04), numerosity (R = �0.25, P = 1.5 � 10�5) and
density (R = �0.1, P = 0.08) judgements. However, following Bon-
ferroni correction for multiple comparisons (28 in total; single-
tailed tests) the effects were only significant for orientation and
numerosity.

To determine whether this association between mathematical
ability and visuospatial sensitivity was restricted to early develop-
ment, we split the data in two by age to capture adult and pre-
adult subpopulations (Group 1 618 years; Group 2 >18 years)
and re-calculated partial correlations for each subgroup. Once
again, the effects of age were held constant since age still varied
considerably within these two groups. For both orientation and
numerosity sensitivity, the correlation with mathematics scores
was highly significant in the adult group (R = �0.26,
P = 1.1 � 10�4; R = �0.26, P = 1.2 � 10�4; N = 216), confirming that
the relationship between numerosity sensitivity and mathematics
is not restricted to childhood (Halberda et al., 2012). In contrast, in
the pre-adult population the effect only approached significance
(R = �0.2, P = 0.08; R = �0.21, P = 0.06). This most probably re-
flected a smaller sample size (N = 81).

3.4. Multiple regression

Having demonstrated a series of robust correlations between
measures, we wanted to determine whether orientation and num-
erosity thresholds would predict a unique proportion of variance in
mathematics scores once built into the same model. It was not
clear that this would be the case, since orientation and numerosity
thresholds were highly significantly correlated with one another
(Supplementary Table 2: r = 0.23, P = 7 � 10�5). A multiple linear
regression analysis was undertaken with mathematics scores as
the outcome variable. In model 1 age, orientation thresholds and
numerosity Weber fractions were included as predictor variables
(Table 1). The resulting model was highly significant
(F(3,293) = 24.31, P < 1 � 10�6) and accounted for 20% of the variance
in the outcome variable (R2 = 0.2). This could be broken down
further into shared variance (8.55%) and unique variance
(11.45%), with contributions from each of the 3 predictor variables.
Each of these individually explained a significant proportion of un-
ique variance in the model [age (4.75%), orientation (3.2%) and
numerosity (3.5%)].

In Model 2 we tested the possibility that participants’ educa-
tion history might be mediating some of the effects described
(Table 1). Consequently, we re-ran the multiple regression anal-
ysis, this time including age, orientation sensitivity, numerosity
sensitivity, education level and mathematics education level as
predictor variables. [See Norris et al. (2006) on the use of linear
regression models with ordinal data.] Once again, the resulting
model was highly significant (F(5,291) = 18.26, P < 1 � 10�6) and
accounted for 24% of the variance in the outcome variable
(R2 = 0.24). This could be broken down into shared variance
(14.5%) and unique variance (9.5%). A significant proportion of
unique variance was explained by age (1.7%), orientation
(1.7%), numerosity (2.5%) and mathematics education (3.6%)
variables. In contrast, general education level was not a signifi-
cant predictor of mathematics scores once the effects of other
factors were controlled for. Size and density thresholds were
not included in the regression analyses as they did not correlate
with mathematics scores. However, their inclusion in model 2
does not affect the pattern of findings reported (data not
presented).

Since mathematical education emerged as a significant predic-
tor of mathematical performance, we wondered whether this var-
iable would similarly predict visual numerosity sensitivity. Partial
correlation of mathematical education levels against visual numer-
osity thresholds (controlling for the effects of age) highlighted a
highly significant association (r = �0.2, P = 5.4 � 10�4; Supplemen-
tary Table 2). Consequently, we performed a multiple regression
analysis with visual numerosity thresholds as the outcome variable
(Table 2) and mathematical education level, general education le-
vel and age as predictors. The resulting model was highly
significant (F(3,293) = 8.87, P = 1.2 � 10�5) and accounted for 8% of
the variance in the outcome variable (R2 = 0.08). However,



Fig. 4. Scatterplot of mathematics scores against visuospatial sensitivity. Correlations reported (details inset) reflect partial correlations with the effects of age held constant.
R = Pearson’s correlation coefficient; P = significance value. Significance values presented are uncorrected for multiple comparisons. See Supplementary Table 2 also.

Table 1
Multiple regression – predicting mathematics scores. For each model listed (1 and 2),
all predictor variables reported were added simultaneously rather than hierarchically.
P values in bold denote minimum significance at an alpha level of 0.05.

Model no. Variable Beta t P

1 Age 0.23 4.18 3.9 � 10�5

Orientation �0.19 �3.4 1 � 10�3

Numerosity �0.2 �3.58 4 � 10�4

2 Age 0.17 2.58 0.01
Orientation �0.15 �2.53 0.01
Numerosity �0.17 �3.09 2 � 10�3

Education �0.08 �1 0.32
Maths education 0.27 3.72 2.4 � 10�4

Table 2
Multiple regression – predicting numerosity sensitivity. For model 2, all predictor
variables reported were added simultaneously. P values in bold denote minimum
significance at an alpha level of 0.05.

Model No. Variable Beta t P

1 Maths education �0.27 �4.89 2 � 10�6

2 Maths education �0.2 �2.61 0.01
Education �0.04 �0.48 0.63
Age �0.08 �1.23 0.22
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mathematical education level was the only significant predictor of
numerosity thresholds once the effects of other variables were
controlled for, explaining 2% of unique variance.
4. Discussion

Our results confirm the findings of Halberda and colleagues in
demonstrating a significant correlation between mathematical
ability and the discrimination of visual numerosity. In addition,
our data show that this relationship persists in adulthood
(Halberda et al., 2012; Inglis et al., 2011) and holds true for higher
numerosities (32–64 elements as opposed to 5–16 in the original
study), i.e. well beyond the subitizing range. Further, the strength
of the correlation we report (r = 0.25 in the pooled data) is similar
to that reported previously: with the exception of one study by
Halberda and colleagues, which reported an r value of 0.5/0.57
(Halberda, Mazzocco, & Feigenson, 2008), r values typically fall in
a range between 0.2 and 0.4 (Gilmore, Mccarthy, & Spelke, 2010,
r = 0.38; Libertus, Feigenson, & Halberda, 2011, r = 0.26; Halberda
et al., 2012, r = 0.23). Thus, numerosity sensitivity represents a sig-
nificant and reliable predictor of mathematics scores. However,
orientation sensitivity also emerged as a significant predictor of
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mathematical performance, so that the relationship between
mathematics and visuospatial sensitivity is not unique to
numerosity.

General factors that potentially link visuospatial sensitivity and
symbolic mathematics, and hence may account for shared variance
captured in our regression model, include visuospatial working
memory and general intelligence (Alloway & Alloway, 2010; Allo-
way & Passolunghi, 2011; Berry et al., 2010; Dumontheil & Kling-
berg, 2012; Melnick & Tadin, 2011; Passolunghi, Mammarella, &
Altoè, 2008; Raghubar, Barnes, & Hecht, 2010; Rutherford & Troje,
2012). In the original study of 14 year-old children by Halberda,
Mazzocco, and Feigenson (2008), general intelligence emerged as
a significant predictor of visual numerosity sensitivity once sym-
bolic mathematics and lexical retrieval were controlled for (Table 2
in Halberda, Mazzocco, & Feigenson (2008)), and visual working
memory approached significance (Ps < 0.1, Table 3 in Halberda,
Mazzocco, and Feigenson (2008)). Whilst we did not test or control
for these factors independently, all visuospatial tasks tested were
closely matched in terms of procedure and stimulus structure.
Nonetheless, any differences in the demands of each task on these
factors may have led to variation in the strength of cross-correla-
tions as well as the predictive power of individual measures.

Another potential link between visuospatial sensitivity and
mathematics is the need to encode and compare relative magni-
tudes (Bueti & Walsh, 2009; Walsh, 2003). Whilst several theories
of human mathematical development claim a pre-existing numer-
osity processing network is sequestered for the purposes of sym-
bolic mathematics (Dehaene, Dehaene-Lambertz, & Cohen, 1998),
it is not yet clear whether this mechanism is specific to numeros-
ity, or instead, if its location in the parietal cortex reflects a more
general association with spatial and magnitude processing (Pinel
et al., 2004). There is growing evidence that regions within the
IPS encode and compare relative magnitudes independently of per-
ceptual modality or stimulus dimension, i.e. rather than numerosity
exclusively (Cappelletti, Muggleton, & Walsh, 2009; Eger et al.,
2003; Piazza et al., 2006, 2007; Pinel et al., 2004; Venkatraman,
Ansari, & Chee, 2005). For example, transcranial magnetic stimula-
tion (TMS) of the IPS impairs judgements of relative size as well as
relative numerosity, but critically, does not affect performance on a
task that involves the processing of symbolic numerals without a
comparison of quantity (Cappelletti, Muggleton, & Walsh, 2009).
In addition, inter-individual differences in activity within this re-
gion during a visual working memory task have been shown to
predict mathematical performance 2 years subsequently
(Dumontheil & Klingberg, 2012).

Although an association between visuospatial and mathemati-
cal processing is consistent with the literature discussed above, it
is nonetheless unclear why the association we report was limited
to a subset of visuospatial tasks. Thus, why did orientation and
numerosity thresholds predict mathematics scores, whilst those
for density and size did not? Further, what is the source of the un-
ique variance in mathematics scores that could be explained by
individual visuospatial tasks? Particularly puzzling is the lack of
an association between mathematical performance and density
thresholds since we have previously demonstrated an intimate link
between numerosity and density judgements (Tibber, Greenwood,
& Dakin, 2012) and provided a relatively simple model of their
completion based on a common filtering stage (Dakin et al.,
2011). [See Stoianov and Zorzi (2012) also for details of a related
network model of numerosity perception.] Hence, if numerosity
thresholds were predictive of mathematics scores we would
strongly expect density thresholds to be so also. However, the fact
that thresholds reported were considerably higher for density than
they were for numerosity (0.29 compared to 0.21), a finding that
directly contradicts previous results, including our own (Dakin
et al., 2011; Ross & Burr, 2010; Tibber, Greenwood, & Dakin,
2012), leads us to speculate that a subset of participants may have
used inappropriate or mixed strategies for the density task. Indeed,
there was a potential ambiguity with respect to whether partici-
pants should match the patches for absolute density (i.e. the actual
inter-element spacing), or match the patches for relative density
according to overall patch size (so that the reference and test ap-
peared to be scaled versions of one another). The possibility that
density judgements are actually predictive of mathematical perfor-
mance, but that the effect was diluted by a subset of participants
performing suboptimally is also consistent with the finding that
density thresholds correlated with mathematical scores prior to
Bonferroni correction for multiple comparisons (Supplementary
Table 2).

Similarly, we can only speculate as to why size thresholds did
not predict mathematical performance when other visuospatial
tasks, i.e. numerosity and orientation judgements, did. Unlike den-
sity however, size thresholds did not even approach significance as
a correlate of mathematical performance, suggesting that in some
fundamental way size judgements differ from the other 3 visuo-
spatial tasks (Supplementary Table 2). One possibility is that size
judgements place a lower load on available (potentially shared) re-
sources, thereby reducing the likelihood of detecting any associa-
tion, although why this would be the case is not clear. Consistent
with this possibility however, Weber fractions for size were much
lower than for number or density judgements, 0.05 compared to
0.21 and 0.29, respectively (Fig. 2). Although merely speculative,
this possibility lends itself to a clear prediction, namely that size
judgements should interfere less with simultaneously executed
numerosity judgements than would orientation judgements in a
dual-task interference paradigm. An alternative interpretation is
that size judgements simply tap into distinct (independent) mech-
anisms, although the afore-mentioned findings from TMS studies
of the IPS suggest otherwise (Cappelletti, Muggleton, & Walsh,
2009).

Halberda, Mazzocco, and Feigenson (2008) provided two possi-
ble interpretations of their data: first, that inter-individual differ-
ences in an innate mechanism play a causal role in the
development of both mathematical and visuospatial abilities; sec-
ond, that experience in symbolic mathematics leads to learning
that is transferred to performance on visuospatial judgements.
Our data are largely consistent with the second hypothesis. Thus,
we have shown that mathematical education levels significantly
predict both mathematics scores and sensitivity to visual numeros-
ity, even when other factors are built into the model (i.e. age and
general education level). Thus, having a higher level of education
in mathematics is associated with high orientation and numerosity
sensitivity as well as greater mathematical ability. Since mathe-
matical education does not involve training in orientation and
numerosity judgements, it clearly cannot be the case that learning
is transferred in the opposite direction: i.e. from visuospatial to
symbolic mathematics tasks. One possibility that should be consid-
ered however, is that a common system does indeed subserve both
mathematical and visuospatial tasks, and that people with a sensi-
tive mechanism are simply more likely to pursue mathematics
education to a higher level. Unfortunately the data are unable to
establish any direction of causality. However, it is clear that even
if training in mathematics were shown to transfer to performance
on numerosity tasks, other factors must also play a role in the
underlying mechanism’s developmental trajectory, since number
acuity improves dramatically prior to the child receiving any train-
ing in symbolic mathematics (Halberda & Feigenson, 2008; Piazza
et al., 2010).

Finally, we also provide evidence that male participants tended
to outperform females on all visuospatial and mathematical tasks
administered. Nonetheless, this is not necessarily indicative of a
biological (genetic) underpinning. Whilst a number of previous
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studies report male participants outperforming females at mathe-
matics (Fryer & Levitt, 2010; Hyde, Fennema, & Lamon, 1990; Mul-
lis et al., 2000; Rosselli et al., 2009) as well as a subset of
visuospatial tasks that require mental transformation of stimuli
(Delgado & Prieto, 1996; Lawton & Hatcher, 2005; Loring-Meier
& Halpern, 1999; Masters, 1998; Masters & Sanders, 1993; Voyer,
Voyer, & Bryden, 1995), the performance gap (where detected)
has been shown to widen with age and is likely to reflect differ-
ences in cultural expectations and exposure history (Hyde, Fen-
nema, & Lamon, 1990; Lindberg et al., 2010).
5. Conclusions

The data presented support the notion of an intimate associa-
tion between mathematics and visuospatial sensitivity. However,
the findings also indicate that this relationship is not unique to vi-
sual numerosity, raising the question: what connects these seem-
ingly disparate tasks? Whilst several possibilities have been
discussed, from cognitive components such as visuospatial work-
ing memory and general intelligence or the notion of a common
magnitude comparison system, it seems unlikely that any single
factor will capture the data in its entirety. Thus, orientation sensi-
tivity, numerosity sensitivity and mathematical education level all
contributed to the prediction of unique as well as shared variance
in mathematics scores, suggesting partially overlapping mecha-
nisms. Future studies will therefore need to employ a broader
range of closely matched tests and cognitive manipulations if the
precise nature of mathematics’ composite processes are to be
unravelled.
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