

Metadata of the chapter that will be visualized online

Chapter Title	Hamilton's Rule and Theoretical Implications	
Copyright Year	2016	
Copyright Holder	Springer International Publishing Switzerland	
Corresponding Author	Family Name	King
	Particle	
	Given Name	Robert
	Suffix	
	Division/Department	School of Applied Psychology
	Organization/University	University College Cork
	City	Cork
	Country	Ireland
	Email	r.king@ucc.ie

H

1

2 **Hamilton's Rule and Theoretical 3 Implications**

4 Au1 Robert King
5 School of Applied Psychology, University
6 College Cork, Cork, Ireland

7 Au2 **Definition**

8 Hamilton's rule is that an altruistic behavior can
9 be selected for in a population under the circum-
10 stances that

11 1. The behavior is heritable (variance explained
12 by genetic difference).
13 2. The gene underlying it provides a benefit to
14 those who share that gene by common descent
15 that is higher than the cost exerted, multiplied
16 by the coefficient of relatedness.

17 This is usually simplified to $r B - C > 0$. In this
18 formulation r is the relatedness coefficient
19 between actor and beneficiary of behavior; B is
20 the reproductive benefit provided to the recipient;
21 and C is the cost to the actor in terms of direct
22 reproduction.

23 **Introduction**

24 The term "paradigm shift" should come with a
25 health warning. Hamilton's rule, formalizing

inclusive fitness, is one of those very few devel- 26
opments in science that genuinely deserves the 27
accolade. Inclusive fitness is a central, axiomatic 28
concept in evolutionary biology. Darwin's discov- 29
eries, concerning descent with modification from 30
common ancestry directed by natural selection, 31
were the result of years of painstaking observation 32
and the synthesis of vast amounts of empirical 33
data. Hamilton's rule is an extension of Darwin's 34
insight, based on pure deductive reasoning as laid 35
out in (Hamilton 1964) and further developed in 36
papers of equal mathematical sophistication (e.g., 37
Price 1972). 38

While the complexities of these original papers 39
are rarely directly engaged with, the take-home 40
message seems simple: Namely, that altruistic 41
behavior can be selected for just in case that the 42
benefit bestowed on the recipient (B) multiplied 43
by the coefficient of relatedness between actor and 44
recipient (r) minus the cost to actor (C) is greater 45
than zero. 46

This is typically expressed as $r B - C < 0$. 47

Rarely has such a deceptively simple formula- 48
tion had such profound consequences or provoked 49
such large misconceptions and fights over inter- 50
pretation. It has been argued that the rule as it 51
stands is too simple to permit simple predictions 52
on the basis of it (Frank 1998). Whether or not this 53
is true, it has been tempting for scholars to rush to 54
predictions based on it, perhaps in a version of 55
physics envy. The upshot of this haste can then be 56
that, following a supposed failure of Hamilton's 57
rule to apply, scholars seek for other explanations 58

59 for the source of a social behavior. In this vein it is
 60 worth emphasizing that there are a large number
 61 of things that Hamilton's rule does not imply and
 62 does not apply to – much though it may appear to.

63 Why does all this matter? It is not hyperbole to
 64 say that Hamilton's rule explains the otherwise
 65 miraculous. Miracles are, strictly speaking, things
 66 that cannot be explained by appeal to natural laws.
 67 Darwin's insight explains how the world appears
 68 to be designed but without needing a designer.
 69 Hamilton's extension of Darwin's insight is no
 70 less momentous. It explains how moral
 71 behavior – which at its bedrock – requires the
 72 capacity to benefit others at a net cost to oneself
 73 (in other words, true altruism) can come into the
 74 world without a divinity to underwrite it.

75 Throughout history, humans have typically
 76 sought for supernatural explanations for the way
 77 that the universe contains both beauty and goodness.
 78 As Kant famously put it “Two things awe me
 79 most, the *starry sky* above me and the *moral law*
 80 within me.” Darwin's discoveries showed us that
 81 no designer was needed to create functionality and
 82 in the process reminded us that not all functionality
 83 was beautiful. Hamilton's rule unites all of
 84 nature in terms of how genuine altruism – a crucial
 85 social behavior – can exist at all without super-
 86 natural interference. In the process he similarly
 87 showed us that our intuitions about what is truly
 88 good cannot be relied on. Of course, this mathe-
 89 matical extension of evolution by natural selec-
 90 tion has far more implications than simply that it is
 91 the most general formulation of natural selection
 92 yet devised.

93 Useful Terms

94 **Adaptation:** A trait that improves fitness – defined
 95 in terms of representation of genes in the next
 96 generation. Since Darwin and the modern synthe-
 97 sis, the only non-supernatural force that explains
 98 the appearance of design in this fashion is natural
 99 selection, although other forces (such as drift) can
 100 explain differential representation of genes.

101 **Altruism:** A behavior that imposes a cost on the
 102 actor and gives a benefit to the recipient. The word
 103 is usually applied to behaviors, but any trait could

be altruistic – such as a physical trait that acts to
 104 benefit others at a cost to the user like a honey-
 105 bee's sacrificial sting. 106

107 **Gene:** The basic unit of selection. Whatever
 108 has the requisite properties of longevity, fecun-
 109 dity, and fidelity is a gene in the sense needed for
 110 evolutionary biology. Since the double-helix
 111 nature of DNA has been uncovered (which has
 112 those three required properties), this has become
 113 the focus of research. However, interesting com-
 114 plexities such as the various kinds of interactions
 115 between genes make judgements that rely on a
 116 single “gene for x” potentially misleading.
 117 A useful way to think of genes for evolutionary
 118 biology purposes is as a catalyst whose catalyzing
 119 reactions influence its representation in the next
 120 generation (Dawkins 1976; Haig 1997). 120

121 **Green beards:** A putative tightly aligned prop-
 122 erty linking genes to phenotype that would allow
 123 them to recognize one another directly. It is con-
 124 troversial whether any genes do this, but no one
 125 claims that they do in the case of humans. How-
 126 ever, humans do possess adaptations allowing
 127 them to recognize kin at better-than-chance levels. 127

128 **Group selection:** There are a number of mean-
 129 ings for this term, and not all are mutually consis-
 130 tent. The original use of the term, by Wynne-
 131 Edwards, to refer to voluntary limitation of
 132 fitness-producing behaviors so as to benefit the
 133 group has fallen out of favor as being shown to
 134 suffer from being fatally vulnerable to selfish
 135 invaders. While other uses do persist, there is to
 136 date no additional explanatory power that has
 137 been shown to be dependent on modeling social
 138 behavior in this way, rather than in terms of
 139 existing mechanisms such as inclusive fitness
 140 and mutualism. Group selection in the way pre-
 141 cisely defined by Price (1972) can exist but only in
 142 extreme situations that do not pertain to human
 143 beings (such as groups budding and reproducing
 144 faster than their constituent elements do). That a
 145 group persists or expands is not itself an instance
 146 of group selection because the group is not, in this
 147 case, the unit of selection. Humans have a number
 148 of adaptations to groupishness, however, and
 149 these are important. 149

150 **Heritability:** The proportion of variance in a
 151 trait accounted for by genetic factors. It is 151

152 important to note that heritability is not a fixed
 153 property. For example, as shared environments
 154 become more similar, then heritability increases.
 155 Heritability is sometimes confused with "genetic
 156 determinism" which is a largely meaningless
 157 phrase. The development of human heads can be
 158 safely said to be encoded in genes. The actual
 159 possession of a head has a heritability of
 160 0, because variance in the number of heads pos-
 161 sessed by a specific human (0 or 1) will be entirely
 162 explicable in terms of environmental factors.

163 Inclusive fitness: Individuals can affect the
 164 transmission of their genes into the next genera-
 165 tion either directly (their own reproduction) or
 166 indirectly (that of relatives). Inclusive fitness is
 167 an extension of Darwin's principle of evolution
 168 by natural selection so as to include social
 169 behaviors – indirect as well as direct benefits. It
 170 is inclusive fitness that Darwinian individuals can
 171 be assumed to maximize – making it the most
 172 generally applicable model for explaining adapta-
 173 tion yet formulated. Inclusive fitness can be mea-
 174 sured through measuring the effect on offspring in
 175 general (direct and indirect) multiplied by the
 176 degree of relatedness. As such it is foundational
 177 and true by deduction once one accepts that evo-
 178 lution is through differential survival of genes in
 179 the gene pool. Attempts to disprove it are thus
 180 misguided, unless one first attempts to disprove
 181 the concept of fitness or the concept of genes.

Au4 182 Hamilton's rule for inclusive fitness is often sim-
 183 plified to $r B - C > 0$, where r is the coefficient of
 184 relatedness, B is the benefit in terms of fitness, and
 185 C is the cost to the actor.

Au5 186 Kin selection: A term coined by Maynard
 187 Smith (1964) to explain the indirect fitness bene-
 188 fits that accrue from aiding kin reproduction and
 189 to distinguish this from group selection. In one
 190 sense kin selection refers to relatedness due to
 191 common descent. However, a broader use of the
 192 term refers to the degree of shared genes at par-
 193 ticular loci – whether or not these happened to
 194 come from shared ancestry. However, given that
 195 green-beard effects (where genes can recognize
 196 copies of themselves) are likely to be rare, the
 197 differences between these uses are unlikely to
 198 matter much in humans. Hamilton does not use
 199 the term in his writings. Inclusive fitness (unlike

kin selection) does not require actual kinship, just 200
 genetically nonrandom altruism (Hamilton 1975). 201
 This could occur through situations of compara- 202
 tively low dispersal, for example. 203

Mutualism: Behaviors that provide fitness ben- 204
 efits (not necessarily equal) to both actors and 205
 recipients. It is easy to mistake mutualistic behav- 206
 iors for altruistic ones. 207

Relatedness: Although this is commonly 208
 thought to refer to shared genes, this is a simplifi- 209
 cation with consequences. A much better defini- 210
 tion is to put relatedness in terms of the degree of 211
 genetic similarity between individuals related to 212
 the average background shared genetic similarity. 213
 See Box 1 (taken from West et al. 2011 and used 214
 with permission) for a more complete description. 215

Selfish: Behaviors that benefit the actor but 216
 impose a cost on the recipient. 217

Social behavior: Any behavior that has conse- 218
 quences for other individuals (Hamilton 1964). 219
 Mere presence may have consequences but it is 220
 not a behavior, per se. There are four types of 221
 consequence that can occur: altruistic, mutual, 222
 selfish, and spiteful. 223

Spiteful: Behaviors that impose costs on both 224
 recipient and actor. One of the strengths of 225
 Hamilton's (1970) formulation of social behaviors 226
 is its successful prediction of spiteful behaviors in 227
 cases where relatedness coefficients are negative. 228

Implications of Hamilton's Rule

Good theory both explains and predicts. It 230
 explains what we see and frames what kinds of 231
 questions we can ask of our observations. And, it 232
 makes (one hopes) surprising predictions about 233
 things that we might see and the things that, 234
 despite persistent search, we don't see. The more 235
 surprising the prediction, the more confident we 236
 are of the theory if it is confirmed. Darwinian 237
 evolution by natural selection explains the appear- 238
 ance of design in the natural world and places 239
 constraints on the sorts of traits that can exist by 240
 limiting the ways that they can come to exist. For 241
 example, Darwin could famously predict the exis- 242
 tence of a particular kind of moth and its traits 243

244 prior to its discovery, based on observations of a
245 deep flower with nectar at its base.

246 Hamilton's rule makes similar surprising pre-
247 dictions and offers constraints on the sorts of
248 social behaviors that can evolve. Its predictions
249 are somewhat more complex to follow than natu-
250 ral selection alone, however. The rule also makes
251 predictions, but often not the ones attributed to it.

252 Inclusive fitness implies that organisms can be
253 assumed to be acting so as to maximize their
254 average lifetime fitness (even if individuals may
255 deviate from this). Hamilton's extension of the
256 Darwinian insight was to realize that this included
257 not just the fitness of the individual themselves but
258 also of their relatives. Social behavior involves
259 more than one entity, of course. For ease let's
260 call them an actor and a recipient. Either one,
261 both, or neither can benefit from the interaction.
262 This gives us four possibilities. If both benefit, this
263 is mutualism. If neither benefits, this is spite. If the
264 actor gains at the expense of the recipient, then
265 they are truly selfish (in the technical sense of the
266 word – they may or may not have selfish motives),
267 whereas if the actor loses out but the recipient
268 benefits, this is altruism (West et al. 2007). Once
269 again, "altruistic" here means what it means in a
270 technical biological sense. For everyday usage
271 behaviors that are mutualisms (like both parents
272 giving loving care to a child) might be felt to be
273 altruistic when they are mutually beneficial. It is
274 important not to be misled (by our natural ten-
275 dency to be hypervigilant for our fellow humans'
276 potential to be exploiting us) into thinking that
277 these behaviors are somehow not really altruistic.

278 Questions That Biology Can Answer

279 Tinbergen (1963) helpfully defined the four types
280 of biological questions that can be asked of a trait.

- 281 1. How does the trait contribute to fitness?
282 (Evolutionary question.)
- 283 2. How does it function? (Mechanistic question.)
- 284 3. How does the trait develop? (Ontogenetic
285 question.)
- 286 4. How did the trait evolve? (Phylogenetic
287 question.)

There is resemblance to Aristotle's four causes 288 (material, formal, efficient, and final) with some 289 scholars insisting that final causes (teleology) cor- 290 respond to the evolutionary explanation of a trait, 291 and, possibly, Darwin himself may have flirted 292 with this idea. However, teleology is end directed 293 and evolutionary fitness is something that can 294 only be seen in retrospect. Other than as a short- 295 hand (i.e., organisms behave as if they are trying 296 to maximize their fitness), the resemblance of 297 evolutionary causation to teleology is misleading. 298 Organisms are driven neither by an inner elan vital 299 nor pulled by an external divine plan. 300

A useful general distinction following from 301 Tinbergen (1963) is that ultimate answers are 302 given to "why" questions, whereas proximate 303 answers are given to "how" questions. Thus, in 304 answer to a question about how eyes develop, a 305 proximate answer might look at the development 306 of eyes and ask questions such as "do neonates see 307 color?" On the other hand, a question that asked 308 "why do humans discriminate red and green" 309 might make reference to our phylogenetic history 310 and how the ability of our ancestors to discrimi- 311 nate ripe fruits from unripe ones increased their 312 fitness. These would be ultimate questions. 313

314 Information and Price's Formulation 315 of Altruism

The general application of game theory to evolu- 316 tionary problems begins with the work of Smith 317 and Price (1973) which showed how limited con- 318 flict between animals could be modeled without 319 assuming some benefit to the species model. 320 These insights depended in turn on Price's (1995 321 posthumous) formulation of Hamilton's rule. 322 Here he realized that any useful mathematical 323 definition of selection is needed to exclude "psy- 324 chological factors of preferences and decision 325 making" (p. 389). 326

This is important for a number of reasons, but 327 one of them is that human beings – hypervigilant 328 as they are to signs of possible fakery and betrayal 329 in acts of apparent altruism – can be led astray by 330 the notion that all altruism is somehow not 331 real – by which they usually mean that the 332

333 appropriate feelings associated with it may be
 334 absent in a particular case. It may well have
 335 made a lot of evolutionary sense for our ancestors
 336 to test one another in the group for the presence or
 337 absence of particular moral sentiments. Indeed,
 338 we likely still do this in the form of gossip and
 339 similar behaviors. However, the proximate moral
 340 emotions of, for instance, empathy or shame,
 341 which mediate social behaviors, are not to be
 342 confused with the ultimate causes of how the
 343 gene underlying altruistic behaviors might be
 344 selected for by evolution.

345 Price (1995) makes an explicit analogy with
 346 how Hartley's (1928) definition of information,
 347 which made no reference to meaningfulness, was
 348 foundational to Shannon's (1948) insights into
 349 information theory. Hartley's (1928) definition of
 350 a practical measure of information was in terms of
 351 the logarithm of the number of possible symbol
 352 sequences. It is a striking fact, not lost on contem-
 353 porary physicists, that this definition of
 354 information:

$$W = K \log m$$

355 (where W is the speed of transmission of informa-
 356 tion, K is a constant – to be empirically
 357 determined – and m is the range of voltage levels
 358 to choose from in the signaling system)

359 Has so much in common with Ludwig
 360 Boltzmann's formulation of entropy

$$S = k_B \log W$$

361 (where S is the entropy of an ideal gas, k_B is
 362 Boltzmann's constant – an empirically determined
 363 number – and W is the number of microstates in
 364 that system).

365 The fact that energy and information can be put
 366 in terms of one another should alert scholars to the
 367 fact that the information referred to here does not
 368 require psychological meaning. This is important
 369 because many might otherwise assume that infor-
 370 mation requires some sort of irreducible semantic
 371 content – e.g., a mind that understands it – and it
 372 does not. In the same way, altruism (and aggres-
 373 sion for that matter) can be modeled without any
 374 necessary ascription of proximate mechanisms by

which they are manifested (such as loving 375
 feelings). 376

Genes, Selfish, and Otherwise

377

Genes can be helpfully thought of as a catalyst 378
 whose catalyzing reactions affect their own repre- 379
 sentation in the next generation (Haig 1997). 380
 Another way to think of this is that they are as 381
 replicators that build vehicles through which they 382
 interact with the world, including one another 383
 (Dawkins 1999). 384

Game theory has become central to modeling 385
 these complex interactions of vehicles, providing 386
 testable and often surprising predictions (Smith 387
 and Price 1973). Gene frequency can be held in 388
 various kinds of dynamic equilibrium – helpfully 389
 referred to as evolutionarily stable strategies 390
 (ESS). This is a term borrowed from game theory 391
 to describe a set of strategies adopted by actors in 392
 a population that is stable. By “stable” it is meant 393
 that an invading (and rare) alternative strategy 394
 cannot invade and become dominant. 395

To a first approximation, an individual's gene's 396
 success is synonymous with her own. However, 397
 this isn't necessarily true when the fitness of rela- 398
 tives who share particular genes by common 399
 descent is factored in, and this is when Hamilton's 400
 (1964) insight comes into play. At this point a 401
 suite of possibilities for modeling and predicting 402
 behaviors opens up. Of course, analysis may not 403
 stop there. As Haig (1997) has pointed out, the 404
 genes may well be in conflict with one another at 405
 the level of expression within the individual as 406
 well. Indeed the latter provides a powerful test of 407
 how powerful the “selfish-gene” model really is 408
 (Dawkins 1976). To illustrate this consider the 409
 conditions of Angelman and Prader-Willi 410
 syndromes – both of which are usually considered 411
 as developmental abnormalities. 412

Unless genes are taken to be “selfish,” i.e., that 413
 they seek representation in the next generation 414
 even at the (possible) expense of their hosts, then 415
 a number of phenomena are inexplicable. A good 416
 example would be maternal/paternal drives for 417
 gene expression – genomic imprinting. Here, 418
 some proximate mechanism (typically 419

420 methylation) causes some genes to prosper
 421 (be expressed) at the expense of others. Some
 422 genes know if they are derived from the father or
 423 the mother. A classic example would be genes on
 424 chromosome 15 which code for the growth of the
 425 hypothalamus (Buiting et al. 1995). The father's
 426 genes would benefit – i.e., maximize their
 427 representation – from an offspring which
 428 demands a lot from the mother, and the genes
 429 from his line try to force expression at the expense
 430 of the mother's genes. At the same time, her
 431 gene's interests (and her own) would be served
 432 by hedging her bets and not investing all in one
 433 highly demanding offspring.

434 Normally the conflict of these genes is held in
 435 dynamic tension – neither set winning out. How-
 436 ever, the evidence that they reached this impasse
 437 through conflict lies in the conditions that (rarely)
 438 result if one set does happen to win out over the
 439 other. If the father's genes win, then the baby
 440 develops Angelman syndrome (and is highly
 441 demanding), whereas if the mother's win,
 442 Prader-Willi syndrome (also known as “happy
 443 puppet syndrome” for the relative
 444 undemandingness of the baby) is the result. If
 445 the fight for expression was silenced, then the
 446 offspring would be perfectly viable (Moore and
 447 Haig 1991). Therefore, the existence of the syn-
 448 dromes (which occur when the mechanisms are
 449 not in dynamic equilibrium) constitute evidence
 450 for selfish gene theory. They are the classic “signs
 451 of a struggle” that detectives see when they enter a
 452 crime scene; nothing else explains the syndromes
 453 in question. Note that these are not cooperative
 454 strategies because the more efficient ones (where
 455 both sides drop their weapons) are not evolution-
 456 arily stable strategies.

457 However, these examples are not *per se* social
 458 interactions, and at the level Hamilton's rule
 459 operates, it is social interactions that are the nor-
 460 mal focus of attention.

461 Cooperation and the Major Biological 462 Transitions

463 It might be thought that evolution by natural
 464 selection implies universal conflict. It is true that,

465 without a struggle for resources, there is nothing 465
 466 that counts as outcompeting others. However, the 466
 467 means of achieving this is frequently cooperative 467
 468 in nature. Selfishness of genes does not imply that 468
 469 they cannot cooperate in many ways to achieve 469
 470 their goals. Cooperation is ubiquitous in nature. 470
 471 One way to see this is in terms of the eight major 471
 472 transitions that have occurred, each increasing the 472
 473 level of complexity and requiring a cooperative 473
 474 mechanism to do so (Smith and Szathmary 1997). 474

(1) Replicating molecules	=> Populations of joined molecules	Au6
(2) Independent replicators	=> Chromosomes	
(3) RNA (gene and enzyme)	=> DNA and protein (genetic code)	
(4) Prokaryotes	=> Eukaryotes (cells with nucleus and organelles)	
(5) Asexual clones	=> Sexual reproduction	
(6) Protists	=> Multicellular organisms with organs	
(7) Solitary individuals	=> Colonies with sterile castes	
(8) Primate societies	=> Human societies with language	

475 Some might argue that cultural evolution also 475
 476 belongs in this line as the next step, but the major- 476
 477 ity view is that cultural evolution represents a 477
 478 separate process rather than a biological transition 478
 479 *per se* (West et al. 2011).

480 Direct and Indirect Fitness

481 Fisher (1930) made a crucial distinction between 481
 482 direct and indirect fitness. To increase direct fit- 482
 483 ness is to increase the representation of the actor's 483
 484 genes in the next generation. It is also possible to 484
 485 have fitness modulated by the behaviors of neigh- 485
 486 bors. For a variety of obvious reasons, neighbors 486
 487 are more likely to be kin and this is indirect fitness. 487

488 Relatedness

489 Organisms have traits, and those traits can be 489
 490 quantified. The trait (phenotype) can be meaning- 490
 491 fully separated into the heritable component and 491

492 environmental component. Natural selection acts
 493 upon genes and changes the average value of the
 494 phenotypic quantity of interest in populations (not
 495 individuals) as Fisher (1930) showed. This is how
 496 increases in fitness are defined. Furthermore,
 497 Fisher (1930) usefully separated such fitness
 498 increases into direct and indirect effects – the lat-
 499 ter including improving the fitness of kin (see
 500 Fig. 1).

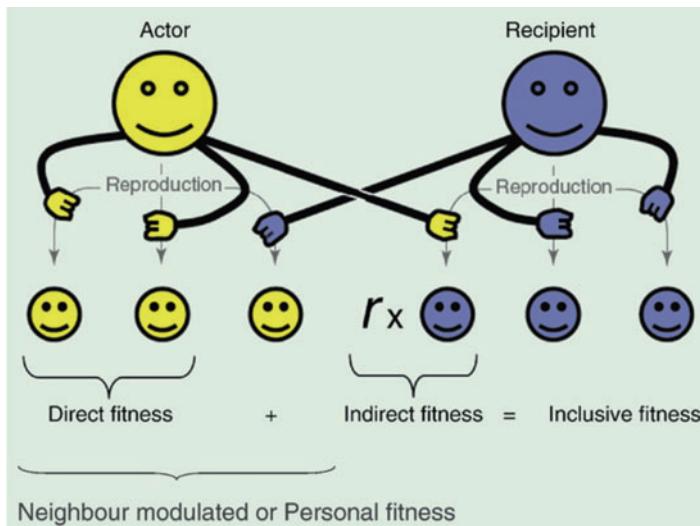
501 One of Hamilton's key insights was to realize
 502 that shared-gene underlying altruism could exist
 503 linearly as well as vertically in a population.
 504 “There is nothing special about the parent-
 505 offspring relationship except its close degree and
 506 a certain fundamental asymmetry” (Hamilton
 507 1964, pp. 1–2). In Hamilton (1970) kinship by
 508 common descent can be calculated from shared
 509 genealogy. Subsequently it was appreciated that
 510 the direction of selection for social behaviors
 511 could be driven by appropriate statistical associa-
 512 tions between individuals (Hamilton 1972;
 513 Price 1970).

514 Hamilton's early work takes an expressly pop-
 515 ulation genetic approach – for example, he
 516 showed that the net effect of allele frequency on
 517 related individuals can be expressed in terms of
 518 the fitness effects on those partners in relation to
 519 their degree of relatedness. This is exactly what r
 520 $B - C > 0$ implies. Later work (Queller 1992)
 521 showed that this is a special case of a more general
 522 model of covariant traits in a socially linked pop-
 523 ulation. This later work fits Hamilton's insights
 524 into a quantitative genetics model but should not
 525 be seen as superseding these insights – rather as
 526 extending them to even further generalizability.

527 The “ r ” refers to the probability that a particu-
 528 lar allele is shared through common descent. It
 529 does not imply anything about the proportion of
 530 shared genes in common. Humans share over
 531 99 % of their genes – r measures the greater
 532 similarity between relatives above the background
 533 similarity between members of the same species.

534 An example of r : Let us assume the frequency
 535 of a particular allele in humans is 0.9. If I have a
 536 brother, then he is related to me with a coefficient
 537 of relatedness of 0.5. For us as a pair of siblings,
 538 half the time my brother will get the allele in
 539 question from the same parental chromosome as

I did and half the time from the other parental 540 chromosome. Therefore the probability of him 541 sharing the particular allele with me is 542 $\frac{1+0.9}{2} = 0.95$. This is (intuitively) halfway between 543 the background frequency of the allele and 1. It is 544 possible that using the concept of gene frequency 545 rather than fitness might forestall confusion. 546


Families and Tribes

547

For parents to invest in offspring is species typical 548 across taxa, with the types of investment varying 549 according to a host of factors. In humans it might 550 be thought that, as human children are so labor- 551 intensive, investment would be total and preclude 552 other behaviors. However, there is plenty of scope 553 for the interests of parents and offspring to diverge 554 somewhat. Parent-offspring conflict is a theme 555 developed by Trivers (1974). The patterns of 556 investment are predicted to alter in accordance 557 with the possibility of investing in further off- 558 spring and viability of the offspring in question 559 among other things. 560

Altruism toward families, both immediate and 561 extended, requires some mechanisms, and Ham- 562 ilton proposed that both kin-recognition mecha- 563 nisms and the natural result of populations with a 564 high viscosity could be the local means by which 565 these occur. The various forms of potential 566 markers of kin recognition are a rich field of 567 enquiry. It could involve such markers as facial 568 features, smell, dialects, skin tone, and proximate 569 markers of tribal allegiance. Viscous populations 570 are those where dispersal is sufficiently low that 571 proximate mechanisms that treat mere proximity 572 as sufficient to cue kinship can be selected for. 573 These will form part of what Dawkins (1999) calls 574 an extended phenotype, and, once again, this is a 575 rich source of potential enquiry. 576

It is even possible that otherwise hard to 577 explain behaviors such as homosexual preference 578 (as distinct from homosexual behaviors which are 579 far more common across taxa) might be explained 580 in terms of inclusive fitness. If so-called helpers at 581 the nest effects could occur with humans with the 582 benefits conferred offsetting the costs involved, 583

Hamilton's Rule and Theoretical Implications,

Fig. 1 Inclusive fitness is the sum of direct and indirect fitness (Hamilton 1964). Social behaviors affect the reproductive success of self and others. The impact of the actor's behavior (yellow hands) on its reproductive success (yellow offspring) is the direct fitness effect. The impact of the actor's behavior (yellow hands) on the reproductive success of social partners (blue offspring), weighted by the relatedness of the actor to the recipient, is the indirect fitness effect. In particular, inclusive fitness does not include all of the reproductive success of relatives (blue

offspring), only that which is due to the behavior of the actor (yellow hands). Also, inclusive fitness does not include all of the reproductive success of the actor (yellow offspring), only that which is due to its own behavior (yellow hands; adapted from West et al. 2007a). A key feature of inclusive fitness is that, as defined, it describes the components of reproductive success which an actor can influence and therefore which they could be appearing to maximize (Reprinted from West et al. (2011) with permission)

584 then this could explain the development and preference of such behaviors. No one has, to date, 585 convincingly shown this to happen without other 586 assumptions being built in to the models as yet 587

588 There is a natural consequence of favoring 589 one's kin and tribe and that is potential disfavoring 590 of those who are not kin or who might be threats to 591 resources. Indeed, this is what we find. Not only is 592 in-group favoritism species typical in humans, but 593 there is also a marked Cinderella effect – with 594 those who are not one's offspring – but are still 595 making demands on one's parental care, being at 596 increased risk of neglect or even violence (Daly 597 and Wilson 1998).

Evidence for these moral dispositions – such as pride, envy, spite, shame, helpfulness, and similar – can be found cross-culturally and even sometimes in prelinguistic neonates favoring puppies who display such tendencies. A large literature – too large to fully review here – involving economic games, has developed to demonstrate these tendencies across human populations (see West et al. 2011, for an extended discussion of economic games in this context). This tendency to punish transgressors and free riders in a community is sometimes referred to as “strong reciprocity.”

It is especially important in considering models of such behavior to distinguish proximate mechanisms, such as feelings of moral outrage at transgressors, from ultimate causes for the selection of such mechanisms, i.e., how they might have contributed to fitness (Mayr 1961). Such selection may be in terms of altruism sensu stricto, but it is at least as likely to be evidence of a mutualistic

598 Strong Reciprocity and Economic Games

599 Humans do not just help one another; they also 600 punish those that do not help. This calls for an 601 explanation because said punishment is costly.

623 system. While it is important that we can model
624 human behavior in laboratory, or quasi-laboratory
625 settings, care must be taken with conclusions that
626 appear to be challenging Hamilton's rule. They
627 are not; any more than the fancifully irreducibly
628 complex systems beloved of the creationists are a
629 challenge to evolution by natural selection. While
630 there may appear to be an elegant symmetry
631 between maximizing utility functions and maxi-
632 mizing inclusive fitness, it doesn't follow that the
633 world acts this way. Often, Hamilton's rule is not
634 being addressed at all.

635 One of the consistent findings from experimen-
636 tal psychology is that participants do not see
637 themselves as isolated laboratory creatures but as
638 full human beings who also live outside of labo-
639 ratories and might meet the recipients of their
640 generosity or cruelty at some point – whatever
641 an experimenter might insist. Thus, the use of
642 so-called one-shot games (especially where it
643 appears that people are more cooperative than
644 expected) must be carefully considered. The
645 experimenter might see them as one shot. It does
646 not follow that this is how the participant sees
647 them. Natural selection works by generating prox-
648 imate mechanisms that maximize inclusive fitness
649 on average. The fact that such systems can be
650 made to misfire does not invalidate natural selec-
651 tion. No one would argue that the existence of
652 pornography undermines sexual selection, just
653 because humans can be fooled by it into generat-
654 ing nonreproductive behaviors.

655 As an example, consider the data on ultimatum
656 games. These are where one actor makes an offer
657 and the other participant can choose to accept or
658 reject it. It turns out that a robust finding is that
659 people make larger offers that standard economic
660 theory would predict, and it could be argued that
661 this supports a contention that humans are notably
662 more cooperative than utility-maximizing (taken
663 as a proxy for inclusive fitness maximizing) the-
664 ory would allow for. However, as West
665 et al. (2011) point out, the data could equally
666 well support a rather more depressing
667 conclusion – namely that humans are notably
668 more antisocial (and know it) than we previously
669 wished. If humans have evolved to recognize that
670 other humans are especially spiteful and vicious,

671 then they might expect low offers to be punished. 671
672 Thus the surprising behavior would be the rejec- 672
673 tion of lower offers, and we could (equally) con- 673
674 clude than humans are more punitive than 674
675 previously thought. 675

676 It is possible that scholars have been misled by 676
677 the word "selfish" in the title of Dawkins (1976) 677
678 work into mistaking the maximizing of represen- 678
679 tation of genes (ultimate causation) with selfish 679
680 motives (proximate motivation). Expecting self- 680
681 ish behavior, scholars perhaps have been pleas- 681
682 antly surprised to find that humans are not, in fact 682
683 selfish. But selfish gene theory never predicted 683
684 that they were, and showing that they are not 684
685 doesn't undermine the model of the selfishness 685
686 of genes. 686

687 Even more common than ultimatum games is 687
688 the prisoner's dilemma. This is an experimental 688
689 economic situation involving a payoff matrix that 689
690 allows researchers to model interactions of coop- 690
691 eration and defection. It is common to find it 691
692 assumed that the prisoner's dilemma has proved 692
693 that in one-shot games the strategy of defection 693
694 (selfishness even to the point of spite) should be 694
695 maximized but that cooperative tit-for-tat 695
696 exchanges will thereafter defeat all other strate- 696
697 gies in iterated interactions. Frank (1998) pro- 697
698 vides a sophisticated set of ways to model such 698
699 interactions in a way that does justice to the 699
700 complexities – modeling the biology of actual 700
701 interactions rather than assuming that the world 701
702 must be fitted, procrustean style, to the most ele- 702
703 gant mathematical model. It turns out that neither 703
704 of these assumptions is correct. 704

Group Selection and Selection for Groupishness

705
706
707 For a variety of interesting reasons, the term 707
708 "group selection" has become almost synony- 708
709 mous with culture and morality in some quarters. 709
710 In part, this confusion is that selfish genes make 710
711 selfish people (and that therefore some special, 711
712 extragenetic mechanism is required to make 712
713 them social), but there is more to the issue 713
714 than this. 714

715 Organisms cooperate, often at a cost to them-
716 selves. How, given the famous Darwinian struggle
717 for survival, is this possible? In the 1950s and
718 1960s, many social behaviors were explained in
719 terms of benefits conferred on individuals (e.g.,
720 Tinbergen 1951; Lorenz 1966). Group selection
721 arguments, sometimes even arguments in terms of
722 the benefit to the species as a whole, were fre-
723 quently invoked. In 1962 Wynne-Edwards pro-
724 posed that organisms would voluntarily reduce
725 their own fitness – for example, by limiting their
726 own reproduction – so that the wider group could
727 survive. One can still hear arguments of this kind
728 in general circulation, although more rarely
729 among scholars.

730 Both logic and empiricism were fatal to these
731 sorts of group selection arguments, however. In
732 terms of logic, it was reasoned that any such
733 adaptations would be ruthlessly outcompeted by
734 intruders that exploited them. Then, when the data
735 were explored, it was found that the sort of self-
736 limiting behaviors predicted could be shown to
737 not occur.

738 There are other forms of group selection,
739 including ones where the unit of selection is itself
740 the group rather than the gene or includes the gene
741 as well in so-called multi-level selection. All
742 scholars agree that this sort of group selection
743 can occur; indeed the covariance equations of
744 Price (1972) could be expanded on one side of
745 the equation without any limit so as to encompass
746 any unit of selection that is desired. However,
747 such expansion comes at a cost that the effect of
748 selection decreases exponentially with such
749 expansion. What this means in practice is that if
750 groups were to bud and reproduce faster than their
751 elements do, then group selection would overtake
752 individual selection. In the absence of this, the
753 effects of group selection are going to be vanish-
754 ingly small, and no one has convincingly shown
755 that this could occur with human beings.

756 Advocates of group selection in relation to
757 humans tend to emphasize helping rather than,
758 for example, genocide. But genocide and other
759 activities like suicidal sacrifice for a military
760 cause would potentially provide some of the
761 strongest evidence for group selection, and in
762 humans it is certainly well attested in our histories.

763 Critics of inclusive fitness models are sometimes
764 explicit that they believe that such selection
765 dooms us to being ultimately selfish (Wilson and
766 Sober 1998). But, “selfish” here is equivocal.
767 Humans are very interested in the motives of one
768 another. For example, we are intensely interested
769 in whether someone’s motives can be trusted. To
770 say that someone is selfish is tantamount to saying
771 that, at crucial moments, they cannot be relied
772 upon. But the selfishness of genes – their blind
773 replication at the expense of others (unless those
774 other genes produce mutual benefit) – must not be
775 confused with selfish motives. Genes have no
776 motives.

777 What Hamilton’s rule explains is not that all
778 so-called altruistic motives are at heart a sham. On
779 the contrary, it explains how genuine empathy,
780 self-sacrifice, and love can exist without supernat-
781 ural intervention. By analogy, if someone were to
782 see a brain scan of a loved one that their
783 ventral- tegmental area was firing strongly in
784 response to a stimulus of them, would they con-
785 clude that “love was not real” because they could
786 see its activity in the brain? They would be foolish
787 if they did – because what they have just seen is
788 actual evidence of just what a real thing love is.

789 Philosophers have struggled for millennia to
790 try to make sense of our sense of morality.
791 Where could it have come from? Is it god? Is it
792 reason? Is morality somehow part of the fabric of
793 the universe? What Hamilton’s rule demonstrates
794 is that some aspects of morality – those that give
795 rise to empathy, for example – are indeed part of
796 the fabric of the universe. This is not the whole of
797 morality, of course. And Hamilton’s rule certainly
798 provides no guidance (or possibly only provides
799 bad guidance) on a human’s actual conduct. How-
800 ever, it provides a non-supernatural source for our
801 proximate social feelings toward one another.

802 When something persistently reoccurs in
803 human thought, it’s likely not simply a misunder-
804 standing but revealing of underlying cognitive
805 architecture. As Lewis Wolpert famously put it,
806 science is profoundly unnatural. We have only
807 been performing science (rather than mere data
808 collection about local regularities) in recent times.
809 The conclusions of science are typically counter-
810 intuitive and require a record of testing and

811 failures to build up gradually. Scientific conclu-
812 sions often jar with our sensibilities.

813 For instance, various forms of Lamarckism
814 (inheritance of acquired characteristics) keep
815 cropping up in each generation perhaps because
816 humans, as obligate investors in their children,
817 probably cannot quite bring themselves to believe
818 that the minute details of what they do as
819 parents – unless they do some truly ghastly
820 things – are normally swamped by the effects of
821 genes. Similarly, perhaps it is the case that group
822 selection keeps recurring as a plausible source of
823 human moral behavior because it feels intuitively
824 evident that we often suppress our needs for the
825 sake of the group.

826 Indeed, some prominent scholars have made
827 such introspection a major pillar of their argu-
828 ments for group selection (Wilson and Sober
829 1998). But intuition and introspection are very
830 misleading here. Given our species' long-
831 documented capacity to have major sections of
832 cognitive architecture opaque to others, it would
833 be premature indeed to consider introspection as
834 final. As Marvin Minsky memorably put it in an
835 interview with Ken Campbell, “all parts of your
836 mind are treating the other parts like tiny robots
837 and finding ways to trick them.” There is abso-
838 lutely no reason to treat our inner emotions about
839 the “good of the group” as anything more than an
840 effective way to get ourselves to advertise our-
841 selves as selfless members of the said group.
842 Indeed, given that the most effective way to fool
843 others is to sincerely believe it oneself, we have
844 very strong reasons to be deeply suspected of
845 introspections in this particular area most of all.

846 An important implication raised by Hamilton
847 (1975) is that altruism in semi-isolated groups
848 depends on the migration rates rather than the
849 size of the groups. This is a rather surprising
850 finding, but Hamilton showed that the interrelat-
851 edness of the groups will gradually tend toward
852 the level of siblinghood if there is, for example,
853 just one migrant per two generations.

Misconceptions About Inclusive Fitness 854

As well as stating what Hamilton's rule is, it is 855 important to state what it is not. Misconceptions 856 about inclusive fitness abound, leading to a num- 857 ber of attempts to rectify this in the theoretical 858 literature (Dawkins 1979; Griffin et al. 2002; Park 859 2007; West et al. 2011). Some of the most com- 860 mon of these (that particularly matter in relation to 861 human beings) are: 862

1. That cooperation is altruistic. This 863 misconception may partly be due to the fact 864 that humans have such exquisitely sensitive 865 reactions to the potential cheaters and traitors 866 in a group. This likely results in the notion that 867 a suggestion that a behavior is somehow not 868 really altruistic (because the actor also benefit- 869 ted) becomes conflated with the idea that the 870 cooperation is itself not genuine. In fact, many 871 cases that are described in the literature as 872 “altruistic” are in fact mutualistic; both actor 873 and recipient benefit from them. It may be 874 better to call “reciprocal altruism” by other 875 names to emphasize this fact (West 876 et al. 2011). Reciprocity (Trivers 1971) can 877 be direct or indirect (mediated, e.g., through 878 reputation in humans), but it is not altruistic, in 879 the strict sense required by Hamilton's rule, if 880 both parties increase fitness through the behav- 881 iors. There are a multitude of mechanisms for 882 enforcing cooperation and these have been 883 found across taxa. The most common is simply 884 punishing transgressors (West et al. 2011). 885 None of these mechanisms require Hamilton's 886 rule or require elaborate new types of explana- 887 tions to be able to explain their occurrence 888 (although they may well require sophisticated 889 and sensitive modeling, of course). 890
2. That relatedness is merely about shared genes. 891 This is incorrect. Only genes that influence 892 behavior (through possible altruism) can fall 893 under the kind of selection that Hamilton's rule 894 describes. For instance, two clones who had no 895 altruistic genes would not aid one another sim- 896 plly because they were genetically identical. 897 Nor is altruism somehow proportional to 898 shared genes. Humans and mustard grass 899

share 15 % of their genes but do not show any measurable degree of altruism toward one another. As stated clearly by Krebs (1987), “The reason why relatedness is important...the coefficient of relatedness between two individuals is equivalent to the probability that they share the gene for altruism, not because they share a high proportion of other non-altruistic genes” (p. 93).

One consequence of this is that simplistic models of individuals doling our lumps of altruism in proportion to the degree of relatedness of family members are very unlikely to be empirically verified. Generational asymmetries in investment and reproductive value are likely to be important variables, for instance.

3. That there is something special about siblinghood, cousinhood, or other similar kin relationships. This is also untrue. One of Hamilton's insights was to appreciate that parent-offspring relatedness was only one way in which relatedness might matter. In a diploid species (such as humans), each offspring has a 50 % chance (ignoring complications) of inheriting a specific altruistic gene. So as long as the benefits bestowed on the offspring outweighed the costs incurred in fitness by the parent multiplied by 50 % (the coefficient of relatedness), the gene could be selected for. Indeed, non-kin who happened to share a cooperative gene could act altruistically, in principle. While it is unlikely that this happens in humans, limited dispersal patterns and viscous populations can frequently mean that groups of humans who are apparently not close kin are still highly related to one another.

4. That kin selection is group selection. Selection for groupishness is not the same as group selection. There is no space here to explore all the variety of possible meanings of the term “group selection,” but some have been discussed above. It is worth noting that evolutionary biologists in general accept the fact that group adaptations (which is one of the meanings attached to the term) can only occur in very specific circumstances that do not apply to humans such as in communities of clones or in situations with no within-group competition.

Many evolutionary biologists would argue that putting things in terms of group selection adds nothing in terms of explanation but carries a potential for confusion (see West et al. 2011 for an extended discussion).

5. That kin selection requires the ability of genes to recognize one another. This putative property is sometimes referred to as a “green-beard” ability (Dawkins 1976). If the gene that underlays an altruistic behavior also pleiotropically produced both visible markers (e.g., the eponymous green beards) and the preference for such markers, then the genes could aid each other more directly. This appears to be very rare in nature. However, kin discrimination can occur through a variety of proximate cues. The most obvious of these is a shared early environment. In birds this would typically be a nest, but there is plenty of evidence (such as the famous Westermarck effect that prevents siblings' sexual interest in one another) of humans' assuming (not necessarily consciously) that those they grew up with are close kin. Other likely sources of interest for humans might include the ability of fathers to discriminate likely offspring, patterns of investment that reflect degrees of paternity uncertainty, and the role of infanticide and natal neglect (see West et al. 2011 supplementary material for an extended discussion of the research in this field).
6. That animals, and humans prior to arithmetical ability, need to be able to consciously calculate relatedness (Sahlins 1977) for Hamilton's rule to apply. No conscious calculations are required here; any more than spiders are required to be able to perform Weyrauch's formula of load bearing to be able to build their webs. Mathematics may be used to model and predict behaviors, but not necessarily the mechanisms by which those behaviors occur.
7. That altruistic behavior is too complex to be captured by a single gene and that therefore there cannot be a “gene for altruism.” This is misleading. Fisher (1930) noted that phenotypically neutral genes were likely to be very rare in practice. Behaviors grow out of complex

996 interactions of genes, not one single “gene for 1041
997 X.” By way of example, a behavior that 1042
998 involves the feeding of chicks in the nest 1043
999 probably relies on a complex interplay of many 1044
1000 genes working through proximate rules such 1045
1001 as “feed whatever is in your nest, has a large 1046
1002 patch of yellow, and is making a noise.” This 1047
1003 rule can be exploited by, e.g., a cuckoo in a 1048
1004 reed warbler nest. However, a mutant gene that 1049
1005 caused the reed warbler to treat its younger 1050
1006 siblings as its offspring (say) would be an 1051
1007 altruistic gene in the strict sense; it reduces 1052
1008 the older reed warbler’s fitness but increases 1053
1009 that of its siblings. Such a gene would not 1054
1010 create the feeding behavior from nothing; it 1055
1011 would build on existing behaviors (Dawkins 1056
1012 1979).

1013 8. That Hamilton’s rule predicts specific interactions 1057
1014 between individuals. For example, it is 1058
1015 not true (despite Haldane’s famous quip) that 1059
1016 humans regularly give their lives for two 1060
1017 brothers or eight cousins. Neither does 1061
1018 Hamilton’s rule predict that they will 1062
1019 (or should). Despite this, it is common to see 1063
1020 Hamilton’s rule presented in undergraduate 1064
1021 textbooks as something that will predict specific 1065
1022 altruistic acts (see Park 2007, for extended 1066
1023 discussion and examples of this misconception 1067
1024 occurring). Hamilton’s rule describes the 1068
1025 circumstances under which a particular altruistic 1069
1026 gene can be selected for, not proximate 1070
1027 instances of behavior.

1028 Conclusion

1029 Hamilton’s rule (1964) is a foundational, axiom- 1077
1030 atic extension of Darwin’s (1859) insights 1078
1031 concerning how species develop through natural 1079
1032 selection. Where Darwin (1859) explained the 1080
1033 apparent miracle of design without recourse to 1081
1034 the supernatural, Hamilton (1964) explained the 1082
1035 underlying apparent miracle of morality – i.e., 1083
1036 altruism – without recourse to anything other 1084
1037 than the components of natural selection. This 1085
1038 insight isn’t the whole of moral behavior of 1086
1039 course. Human morality also requires reason to, 1087
1040 for example, extend thought and behavior in 1088

logically consistent terms. Hamilton’s rule cer- 1041
508 tainly does not itself provide a justification for 1042
509 behaviors. Indeed, inclusive fitness would seem 1043
510 to promote (say) nepotism, and this tendency is 1044
511 not a justification – rather the reverse. 1045

512 One of the things that humans intent on build- 1046
513 ing a better world would be wise to do is to pay 1047
514 attention to the grain of human nature rather than 1048
515 be in denial of it. Humans are not slaves to their 1049
516 genes but their genes do keep culture on a leash, to 1050
517 echo E. O. Wilson’s memorable phrase. 1051
518 Hamilton’s rule delineates one of the most impor- 1052
519 tant ways in which this occurs. Does this make 1053
520 human morality some sort of mistake, as some 1054
521 people seem to fear? In short, do the nihilists 1055
522 (as H. P. Lovecraft joked) have a point when 1056
523 they say “The world is indeed comic, but the 1057
524 joke is on mankind.” Not in the least. The recog- 1058
525 nition that our (proximate) moral sensibilities 1059
526 evolved in strict accordance with the known 1060
527 rules of biology means that they are real things. 1061

528 More than that in principle, this realization 1062
529 gives us ways to identify and perhaps deal with 1063
530 those who do not share those proximate sensibil- 1064
531 ities. Those who lack empathy, for instance, are in 1065
532 principle just as disabled as those born without 1066
533 eyes. Biology is silent on the rational application 1067
534 of such moral sensibilities as shame, pride, and the 1068
535 desire to protect others, however. The rational 1069
536 application of these sensibilities in individual 1070
537 morality, or in the large-scale coordinations that 1071
538 politics requires, is a very human ability too and 1072
539 relies on our ability and need for reason and con- 1073
540 sistency. Only a highly simplistic moral philoso- 1074
541 phy would assume that feelings and sentiments 1075
542 alone were the whole of human ethics. 1076

543 For biologists (and psychologists who accept 1077
544 that psychology must be at a bare minimum 1078
545 consilient with biology), then Hamilton’s rule 1079
546 represents a powerful tool. As with all powerful 1080
547 tools, the potential can go both ways. Although it 1081
548 might seem daunting to face up to the challenges 1082
549 that the mathematical formulations require of us to 1083
550 model human behavior, it is also worth bearing in 1084
551 mind that human minds are a collection of com- 1085
552 plex kludges that evolved over millions of years in 1086
553 response to many conflicting pressures. The 1087
554 promise of an elegant predictive mathematical 1088

1089 tool in the manner of the theoretical physicists is a
 1090 tempting goal, though probably never attainable.
 1091 That said, Hamilton's rule probably comes as
 1092 close to being such a realization of the Ionian
 1093 enchantment – the unification of all sciences
 1094 through mathematics – as we are ever likely to
 1095 get in behavioral science.

1096 Cross-References

- 1097 ► [Hamilton's Rule](#)
- 1098 ► [Kin-Recognition and Classification in Humans](#)
- 1099 ► [Life or Death Helping in Humans](#)
- 1100 ► [Patterns of Helping Among Los Angeles](#)
- 1101 [Women](#)

1102 References

1103 Buiting, K., Saitoh, S., Gross, S., Dittrich, B., Schwartz, S.,
 1104 Nicholls, R. D., & Horsthemke, B. (1995). Inherited
 1105 microdeletions in the Angelman and Prader-Willi syn-
 1106 dromes define an imprinting centre on human chromo-
 1107 some 15. *Nature Genetics*, 9(4), 395–400.

1108 Daly, M., & Wilson, M. (1998). *The truth about Cinder-
 1109 ella: A Darwinian view of parental love*. New Haven:
 1110 Yale University Press.

1111 Darwin, C. (1859/1991). *On the origin of species by means
 1112 of natural selection* (p. 502). London: Murray.

1113 Dawkins, R. (1976). *The selfish gene*. Oxford: Oxford
 1114 University Press.

1115 Dawkins, R. (1979). Twelve misunderstandings of kin
 1116 selection. *Zeitschrift für Tierpsychologie*, 51(2),
 1117 184–200.

1118 Dawkins, R. (1999). *The extended phenotype: The long
 1119 reach of the gene*. Oxford Paperbacks.

1120 Fisher, R. A. (1930). *The genetical theory of natural selec-
 1121 tion: A complete variorum edition*. Oxford: Oxford
 1122 University Press.

1123 Frank, S. A. (1998). *Foundations of social evolution*.
 1124 Princeton: Princeton University Press.

1125 Griffin, A. S., & West, S. A. (2002). Kin selection: Fact and
 1126 fiction. *Trends in Ecology & Evolution*, 17(1), 15–21.

1127 Haig, D. (1997). *The social gene. Behavioural ecology: An
 1128 evolutionary approach* (pp. 284–304). Oxford: Black-
 1129 well Science.

1130 Hamilton, W. D. (1964). The genetical evolution of social
 1131 behaviour. I. & II. *Journal of Theoretical Biology*, 7(1),
 1132 17–52.

1133 Hamilton, W. D. (1970). Selfish and spiteful behaviour in
 1134 an evolutionary model. *Nature*, 228, 1218–1220.

Hamilton, W. D. (1975). Innate social aptitudes of man: An
 1135 approach from evolutionary genetics. *Biosocial
 1136 Anthropology*, 133, 155.

Hartley, R. V. (1928). Transmission of information. *Bell
 1138 System Technical Journal*, 7(3), 535–563.

Krebs, D. (1987). *The challenge of altruism in biology and
 1140 psychology. Sociobiology and psychology: Ideas,
 1141 issues, and applications* (pp. 81–118). Hillsdale:
 1142 Erlbaum.

Lorenz, K. Z. (1966). Evolution of ritualization in the
 1144 biological and cultural spheres. *Philosophical Trans-
 1145 actions of the Royal Society of London Series
 1146 B Biological Sciences*, 251(772), 273–284.

1147 Mayr, E. (1961). Cause and effect in biology kinds of
 1148 causes, predictability, and teleology are viewed by a
 1149 practicing biologist. *Science*, 134(3489), 1501–1506.

1150 Moore, T., & Haig, D. (1991). Genomic imprinting in
 1151 mammalian development: A parental tug-of-war.
 1152 *Trends in Genetics*, 7(2), 45–49.

Park, J. H. (2007). Persistent misunderstandings of inclu-
 1154 sive fitness and kin selection: Their ubiquitous appear-
 1155 ance in social psychology textbooks. *Evolutionary
 1156 Psychology*, 5(4), 860–873. 147470490700500414.

1157 Price, G. R. (1972). Extension of covariance selection
 1158 mathematics. *Annals of Human Genetics*, 35(4),
 1159 485–490.

1160 Price, G. R. (1995). The nature of selection. *Journal of
 1161 Theoretical Biology*, 175(3), 389–396.

1162 Queller, D. C. (1992). A general model for kin selection.
 1163 *Evolution*, 46, 376–380.

1164 Shannon, C. E. (1948/2001). A mathematical theory of
 1165 communication. *ACM SIGMOBILE Mobile Computing
 1166 and Communications Review*, 5(1), 3–55.

1167 Smith, J. M., & Price, G. R. (1973). The logic of animal
 1168 conflict. *Nature*, 246, 15.

1169 Smith, J. M., & Szathmary, E. (1997). The major transi-
 1170 Au10 tions in evolution. Oxford University Press.

Tinbergen, N. (1951). *The study of instinct*. New York:
 1172 Oxford University Press.

1173 Tinbergen, N. (1963). On aims and methods of ethology.
 1174 *Zeitschrift für Tierpsychologie*, 20(4), 410–433.

1175 Trivers, R. L. (1971). The evolution of reciprocal altruism.
 1176 *Quarterly Review of Biology*, 46, 35–57.

1177 Trivers, R. L. (1974). Parent-offspring conflict. *American
 1178 Zoologist*, 14(1), 249–264.

1179 West, S. A., El Mouden, C., & Gardner, A. (2011). Sixteen
 1180 common misconceptions about the evolution of coop-
 1181 eration in humans. *Evolution and Human Behavior*,
 1182 32(4), 231–262.

1183 Wilson, D. S., & Sober, E. (1998). *Unto others: The evo-
 1184 lution and psychology of unselfish behavior*
 1185 (pp. 34–36). Cambridge, MA: Harvard University
 1186 Press.

1187 Wynne-Edwards, V. C. (1962). Animal dispersion: In rela-
 1188 tion to social behaviour (No. QL752 W9 1962a).

1189

Author Queries

Encyclopedia of Evolutionary Psychological Science
Chapter No: 1488-1

Query Refs.	Details Required	Author's response
AU1	Please check if your affiliation(s) and, if applicable, that/ those of your co-author(s) are correct and complete.	
AU2	Please provide Synonyms.	
AU3	Please check if identified head levels are okay.	
AU4	Please check if edit to sentence starting “Hamilton’s rule for...” is okay.	
AU5	Please provide details for Smith (1964), West et al. (2007a), Hamilton (1972), Price (1970), Tinbergen (1951), Sahlins (1977) in the reference list.	
AU6	Please check if formatting of table is okay.	
AU7	Hamilton (1964a) has been changed to Hamilton (1964) as per the reference list. Please check if okay.	
AU8	Please check if edit to sentence starting “On the contrary...” is okay.	
AU9	Please cite Wynne-Edwards (1962) in text.	
AU10	Please provide publisher location for Smith and Szathmary (1997).	

Note:

If you are using material from other works please make sure that you have obtained the necessary permission from the copyright holders and that references to the original publications are included.