

Author's Proof

Carefully read the entire proof and mark all corrections in the appropriate place, using the Adobe Reader commenting tools ([Adobe Help](#)). Do not forget to reply to the queries.

We do not accept corrections in the form of edited manuscripts.

In order to ensure the timely publication of your article, please submit the corrections within 48 hours.

If you have any questions, please contact science.production.office@frontiersin.org.

Author Queries Form

Q1	The citation and surnames of all of the authors have been highlighted. Please check all of the names carefully and indicate if any are incorrect. Please note that this may affect the indexing of your article in repositories such as PubMed.	
Q2	Confirm that the email address in your correspondence section is accurate.	
Q3	Verify that all the equations and special characters are displayed correctly.	
Q4	Ensure, if it applies to your study, the ethics statement is included in the article.	
Q5	Ensure to add all grant numbers and funding information, as after publication this is no longer possible.	
Q6	Please provide the city name for the following references. “Barrett, 2011; Boole, 1854; Moravec, 2000.”	
Q7	Please cite the following references inside the text. “Barrett et al., 2014; Cross and Jackson, 2016; Daugman, 2001; de La Mettrie, 1960; Moravec, 2000; Neumann and Burks, 1966.”	
Q8	Please provide the name of the editors, name of the publisher, city name and page range for “Chalmers, 1996.”	
Q9	Please provide the city name and publisher name for the following references. “Daugman, 2001; de La Mettrie, 1960; Neumann and Burks, 1966.”	
Q10	Please provide the name of the editors, name of the publisher, and city name for “Rescorla and Wagner, 1972.”	
Q11	Please provide the name of the department for “School of Applied Psychology, University College Cork, Cork, Ireland.”	
Q12	Please reduce short running title to maximum of five words.	

Q13	Please add “La Mettrie’s, 1748” to the reference list.	
Q14	Please add “Duagman, 2001” to the reference list.	
Q15	Please add “Morovec, 2000” to the reference list.	
Q16	The author contribution section is mandatory and a standard statement has been inserted. Please edit as needed to accurately reflect the contribution.	
Q17	Please update “Barrett et al.” and add it to the reference list.	

I Can't Get No (Boolean) Satisfaction: A Reply to Barrett et al. (2015)

Robert King

School of Applied Psychology, University College Cork, Cork, Ireland

Keywords: evolutionary psychology, extended mind, cognition, embodied cognition, artificial intelligence

Sometimes history can be philosophically interesting. Barrett (2011) and colleagues (e.g., Barrett et al., 2015) are to be congratulated on widening the scope of our understanding of animal cognition to include its ecological elements. However, in their eagerness to overturn a narrow model of computation, she and her colleagues have glossed over some rather interesting and salient historical facts. This is poignant, as these facts strengthen their case, and sharpen the focus on the more complete picture of ethologically valid cognition that they are drawing.

The key figure missing from the usual historical narrative is George Boole, whose bi-centenary has just passed and (it just so happens) is the luminary whose soon-to-be-restored home is visible from the office where I type this, in the University he led, and on the machine that his insights made possible.

Barrett (2011) wants to draw a distinction between computation—in a narrow sense—abstracted from any particular setting, and the highly embodied—especially ecologically rooted—cognition that she sees in the animals she studies.

In support of this distinction, she cites Searle's (1990) claim that, as a matter of history, humans tend to use their most impressive piece of technology as a metaphor. As exemplars, the ancient Greeks used models of torque-powered siege devices. Mettrie's (1748) *L'Homme Machine* used images of clockwork brains, Freud's libidinous mind was powered by hydraulic instincts, and so on (see Dungan, 2001 for a more extended discussion).

But, as an important historical fact the order of technology-then-metaphor is the other way round in respect of the computational model. Thinking about thinking—specifically Boole's thinking about thinking—came long before the technology did. The technology grew out of it. Thus, it's less true to say that computers are a metaphor for thinking, than that thinking is a metaphor for computation.

One important difference that modern computers have from the “technology as metaphor” pattern is that in none of the other cases have advances been made in the technology as a result of the comparison. Fountains, hydraulics, and clockwork did not become more sophisticated by reflecting on their mind-like properties. On the other hand, artificial intelligence has advanced considerably—to the point where it might be said, without hyperbole, that AI is in many cases the proof that psychology as a science is advancing. When we can formalize an information processing subsystem we can mechanize it. The fact is that we now live in a world where cars drive themselves, airplanes land themselves, and face recognition software finally works.

Deep Mind is living (!) proof that that the Rescorla and Wagner (1972) model of conditional learning works and this is not a unique example (Van Hasselt et al., 2015). The human mind isn't a computer (Searle is right about this) but it does have thousands of computable functions and we are making progress in understanding them. Will there be anything left over when we have solved all these so-called easy problems of Chalmers (1996)? It is too early to say. However, one thing that won't be left over is the ecology. Barrett et al. (2015) have seen to that, by drawing attention to the fact that said functions will be incomplete unless put in ecological (e.g., locally adaptive) contexts. And that's progress, but it is still functionalist progress. Indeed—it's a justly celebrated advance on the Gibsonian programme of embodied functional analysis of cognition. But—it is not

OPEN ACCESS

Edited by:

Jorge Mpodozis,
University of Chile, Chile

Reviewed by:

Louise Barrett,
University of Lethbridge, Canada

*Correspondence:

Robert King
r.king@ucc.ie

Specialty section:

This article was submitted to
Evolutionary Psychology and
Neuroscience,
a section of the journal
Frontiers in Psychology

Received: 12 August 2016

Accepted: 15 November 2016

Published: xx November 2016

Citation:

King R (2016) I Can't Get No (Boolean)
Satisfaction: A Reply to Barrett et al.
(2015). *Front. Psychol.* 7:1880.
doi: 10.3389/fpsyg.2016.01880

115 less functionalist for all that. It turns out that the details of being
 116 an adapted organism (functioning in its ecology) cannot be fully
 117 abstracted into discrete disembodied modules fully specifiable in
 118 terms of brains alone. This might lead some to prematurely think
 119 that functionalism has met its nadir, but this would be a mistake.
 120 Before I get to why this is I need to say a few things about the
 121 Boolean programme that underlies the functionalist revolution
 122 in cognitive science.

123 For an exhaustive exegesis of Boole's work here the authority
 124 is (Corcoran, 2003), but the key ideas are quite accessible.
 125 Boole's basic insight receives its fullest expression in *The Laws*
 126 of Thought (Boole, 1854) and this is an attempt to draw in
 127 all human cognition (it was never about just mathematics)
 128 together in terms of the deep underlying logical structure in
 129 the most abstract form possible, while still being recognizable
 130 at a syntactic level—this level being instantiated (in computers)
 131 in terms of logic gates. Formalizing cognition was itself the
 132 process which allowed physical computers to be eventually
 133 possible.

134 The major later figures in this development are well known.
 135 They include (but are not limited to) Claude Shannon, whose
 136 1947 master's thesis ushered in modern information theory,
 137 through Alan Turing whose 1950 paper offered a principled way
 138 to instantiate a machine that could compute any computable
 139 function (Turing, 1950). John von Neumann's complex proof of
 140 how any machine is really a representation of a function (and
 141 might thereby replicate itself) was also an important landmark,
 142 in 1966. Although all of these papers had important practical
 143 outcomes and were (non-accidentally) made by people with
 144 engineering connections, they were not "how to build" papers.
 145 They were concerned with the formal ways to represent cognition
 146 at the most basic level appreciable by human beings. Note that
 147 this is not the same as saying that this is the only level they exist
 148 at. Those formalizations resulted in physical objects—such as the
 149 one I am typing this on—but the causal arrow was not from object
 150 to concept. Computers (such as the ones used to crack the Enigma
 151 codes) existed by the time of Shannon, Turing, and others but the
 152 foundational functionalist work had been done a century before
 153 by Boole. Thus, it is strictly illegitimate to say that functionalism,
 154 as a strategy for decomposing thought, relies on the computer
 155 metaphor. The functionalism came first.

156 So much for history. Are there independent reasons for
 157 thinking that the functionalist programme is not to be lightly
 158 set aside? Indeed there are, but here I will only mention a few
 159 relevant to Barrett et al. (2015) general programme, which I
 160 should stress, are not things that they necessarily deny.

161 It's commonly asserted that the computational metaphor is
 162 about the formal manipulation of symbols (Searle, 1990). But
 163 this is a half-truth. At one level, a level that makes semantic
 164 sense to a human observer, computers manipulate symbols. But
 165 mainly what they do is turn logic gates on and off really fast.
 166 And no human observer would be able to make any sense of that
 167 at the speeds that it occurs in a modern computer. Of course,
 168 if you delve deeper still what we have in the computer is bits
 169 of information, and witnessing that wouldn't convey anything
 170 much that an unaided human observer could make meaningful.
 171 Indeed, the (physical) computer is itself the aid. Boole's key

172 insight was to analyse the logic of human cognition at the mid-
 173 level and realize that this level could be formalized. And once
 174 something can be formalized it can be mechanized. And the proof
 175 that he was right is the tasty pudding of modern computing—
 176 which undeniably works, or you would not be reading this.

177 Does a modern desktop computer (or any computer for that
 178 matter) replicate human consciousness? Of course it doesn't. But
 179 the formalization of human cognition is a different matter—the
 180 computer comes along almost as a by-product of the attempt to
 181 do that (albeit a by-product that demonstrates that we must be on
 182 to something).

183 It might be objected that humans do not naturally think in
 184 terms of logic gates. And this is true, but hardly to the point.
 185 We are typically unconscious of the underlying computational
 186 structure of things that come naturally to us. Most of us are
 187 unconscious of the grammar of our native tongues unless it is
 188 formally taught to us, and it is entirely unnecessary to learn
 189 the formal grammar of a language to be able to converse in it.
 190 Nevertheless, the formal grammar lays bare the structure of that
 191 language.

192 A follow-up objection might be that, while it is admitted that
 193 Boole laid bare the formal elements of some aspects of human
 194 thought, there are others left untouched. This may well be true
 195 and if it is true then the attempt to build upon his insights with
 196 formal instantiations of computation into physical systems that
 197 replicate human thought will be forever doomed. Once again—it
 198 is too early to tell.

199 One further common mistake is to note that humans
 200 aren't conscious of these sorts of processes. Cognition is not
 201 consciousness. [Vec \(2000\)](#) drew insightful attention to
 202 precisely this fact. He noted that the tasks that required very
 203 smart humans to perform (e.g., diagnose disease, fly airplanes,
 204 play chess) were comparatively trivial to automate (incidentally—
 205 this doesn't imply that the automated version completely
 206 captures the path of human cognition to achieving them). At the
 207 same time, it proved very hard to automate things that to humans
 208 were trivial, such as climbing stairs and recognizing faces. The
 209 solution to this paradox is that evolutionarily ancient processes
 210 do not need to draw on novel conscious elements. But—and this
 211 is the crucial point—they are nonetheless cognitive functions for
 212 all that.

213 Computational modeling is rooted in the realization that all
 214 observations reveal detectable differences. These are information.
 215 If a set of these can be meaningfully grouped into a system
 216 then a change is a state change, and any regularities in such
 217 changes describe a computational—that is a functional-system.
 218 Thus, computation would exist even if computers didn't—this is
 219 where critiques like those of Searle's (1990) miss the point. The
 220 fact that an existing physical computer is, as he puts it, "just a
 221 hunk of junk" is neither here nor there. Once the system can
 222 move between states and store them it's a Turing machine, Post
 223 machine, or Lambda calculus (Church, 1936)—which for these
 224 purposes don't have any significant differences between them. All
 225 such functional states are computational states—defined by the
 226 moving from one state to another. Knowledge—and it doesn't
 227 matter here if we are talking about humans, other animals, or
 228 even plants, is therefore the acquiring of usable local regularities.

An ecology, in other words. Evolution has produced systems that predict things about their environments (brains) that sometime hang out together in social groups. But all of these things are computational states—and adding ecology to the complete picture does not change this fact. Indeed, it deepens it by showing how affordances must be part of the complete functional picture. Indeed, as Barrett et al. are showing, the minimalist bet of some branches of cognitive science—e.g., that we could completely capture the functionalist understanding of the organism without seeing the details of the system it lives in, may well turn out to be false. It turns out that we do need to understand how an organism responds to affordances, that the functional details of perceptual organization matter, and so forth.

But, since we are all functionalists, we really have very good reason to all get along. If it really is functionalism all the way down—then there is no radical split to be had between functional models and the ones Barrett et al. (2015) espouse. What she and her colleagues have done is draw attention to the need for (computational) systems to be closely connected to their

REFERENCES

Barrett, L. (2011). *Beyond the Brain: How Body and Environment Shape Animal and Human Minds*. Princeton University Press.

Barrett, L., Pollet, T. V., and Stulp, G. (2014). From computers to cultivation: reconceptualizing evolutionary psychology. *Front. Psychol.* 5:867. doi: 10.3389/fpsyg.2014.00867

Barrett, L., Pollet, T. V., and Stulp, G. (2015). Evolved Biocultural beings (who invented computers). *Front. Psychol.* 6:1047. doi: 10.3389/fpsyg.2015.01047

Boole, G. (1854). *An Investigation of the Laws of Thought: On Which are Founded the Mathematical Theories of Logic and Probabilities*. Dover Publications.

Brooks, R. A. (1990). Elephants don't play chess. *Rob. Auton. Syst.* 6, 3–15. doi: 10.1016/S0921-8890(05)80025-9

Chalmers, D. J. (1996). "The Conscious Mind" in *Search Of a Fundamental Theory*. Oxford University Press.

Church, A. (1936). An unsolvable problem in elementary number theory. *Am. J. Math.* 58, 345–363.

Corcoran, J. (2003). Aristotle's prior analytics and boole's laws of thought. *Hist. Philos. Logic* 24, 261–288. doi: 10.1080/01445340310001604707

Fried, R., and Jackson, R. R. (2016). The execution of planned detours by spider-eating predators. *J. Exp. Anal. Behav.* 105, 194–210. doi: 10.1002/jeab.189

Daugman, J. G. (2001). *Brain Metaphor and Brain Theory*.

de La Mettrie, J. O. (1960). *L'Homme Machine*, (1748). *Man a Machine*.

ecologies. Specifically, that perception and cognition indeed need to be closely related (Barrett, 2011, p.22). It might be noted that, in this, she echoes the call of Brooks (1990) whose use of the concept of subsumption layers reminds us that one way to escape the representational issue in artificial systems is to make the system use the real world as its model and in this they offer a much needed route to allow affordances to enter into the modeling. Functionalism isn't just the only game in town. It's the only game in any ecology.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and approved it for publication.

ACKNOWLEDGMENTS

I am indebted to Gary Marcus for conversations which partly led to this article.

Moravec, H. P. (2000). *Robot: Mere Machine to Transcendent Mind*. Oxford University Press on Demand.

Neuro, V., and Burks, A. W. (1966). *Theory of Self-Reproducing Automata*.

Rescorla, R. A., and Wagner, A. R. (1972). "A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement," in *Classical Conditioning II: Current Research and Theory*, Vol. 2. 64–99.

Searle, J. R. (1990). Is the brain's mind a computer program. *Sci. Am.* 262, 26–31.
doi: 10.1038/scientificamerican0190-26

Turing, A. M. (1950). Computing machinery and intelligence. *Mind* 59, 433–460.
doi: 10.1093/mind/LIX.236.433

Van Hasselt, H., Guez, A., and Silver, D. (2015). *Deep Reinforcement Learning with Double Q-Learning*. *CoRR*, abs/1509.06461.

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 King. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.