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Beyond covariation: Cues to causal structure 

 

1. Introduction 

Imagine a person with no causal knowledge, nor concept of cause and effect. 

They would be like one of Plato’s cave dwellers – destined to watch the shifting 

shadows of sense experience, but know nothing about the reality that generates these 

patterns. Such ignorance would undermine that person’s most fundamental cognitive 

abilities - to predict, control and explain the world around them. Fortunately we are 

not trapped in such a cave – we are able to interact with the world, and learn about its 

generative structure. How is this possible? 

 The general problem, tackled by philosophers and psychologists alike, is how 

people infer causality from their rich and multifarious experiences of the world. Not 

just the immediate causality of collisions between objects, but the less transparent 

causation of illness by disease, of birth through conception, of kingdoms won through 

battle. What are the general principles that the mind invokes in order to identify such 

causes and effects, and build up larger webs of causal links, so as to capture the 

complexities of physical and social systems? 

 

2. Structure versus strength 

When investigating causality a basic distinction can be made between 

structure and strength. The former concerns the qualitative causal relations that hold 

between variables – whether smoking causes lung cancer, aspirin cures headaches etc. 

The latter concerns the quantitative aspects of these relations – to what degree does 

smoking cause lung cancer, or aspirin alleviate headaches? This distinction is 

captured more formally in the causal Bayes net framework. The structure of a set of 
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variables is represented by the graph, the strength of these links captured in the 

parameterisation of the graph (the probabilities and conditional probabilities that, 

along with the graph itself, determine the probability distribution represented by the 

graph). 

 

 

Exposure 
to H pylori
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Figure 1. A simple Bayesian network representing the potential causes of 
peptic ulcers. 

 

Conceptually, the question of structure is more basic than that of strength – 

one needs to know or assume the existence of a link before one can estimate its 

strength. This is reflected in many of the discovery algorithms used in AI, where there 

is an initial structure learning step prior to estimating the parameters of a graph (see 

Neapolitan, 2003). A natural conjecture is that this priority of structure over strength 

is likewise marked in human cognition (Pearl, 1988; Tenenbaum & Griffiths, 2001; 

Waldmann, 1996; Waldmann & Martignon, 1998).  

This idea receives intuitive support. We often have knowledge about what 

causes what, but little idea about the strength of these relations. For example, most of 

us believe that smoking causes cancer, that exercise promotes health, that alcohol 

inhibits speed of reaction, but know little about the strengths of these relations. 
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Likewise in the case of learning, we seek to establish whether or not causal relations 

exist before trying to assess how strong they are. For example, in a recent medical 

scare in the UK, research has focused on whether the MMR vaccine causes autism, 

not on the degree of this relation. Indeed the lack of evidence in support of the link 

has pre-empted studies into how strong this relation might be.   

The idea that causal cognition is grounded in qualitative relations has also 

influenced the development of computational models of causal inference. To motivate 

his structural account, Pearl (2000) argued that people encode stable aspects of their 

experiences in terms of qualitative causal relations. This inverts the traditional view 

that judgments about probabilistic relations are primary, and that causal relations are 

derived from them. Rather, ‘if conditional independence judgments are by-products of 

stored causal relationships then tapping and representing those relationships directly 

would be a more natural and more reliable way of expressing what we know or 

believe about the world’ (2000, p. 22). 

Despite the apparent primacy of structure over strength, most research in 

causal learning has focused on how people estimate the strength of separate links. In a 

typical experiment variables are pre-sorted as potential causes and effects, and 

participants are asked to estimate the strength of these relations (e.g., Cheng, 1997; 

Shanks, 2004). This approach has generated a lot of data about how people use 

contingency information to estimate causal strength, and how these judgments are 

modulated by response format etc., but does not consider the question of how people 

learn about causal structure. Thus it fails to address an important (arguably the most 

fundamental) part of the learning process.  

This neglect has had various repercussions. It has led to an over-estimation of 

the importance of statistical data at the expense of other key cues in causal learning.  
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For example, associative theories focus on learning mechanisms that encode the 

strength of covariation between cues and outcomes (e.g., Shanks & Dickinson, 1987), 

but they are insensitive to the important structural distinction between causes and 

effects.  As a consequence they are incapable of distinguishing between associations 

that link spurious relations (e.g., barometer and storm) from true causal relations 

(atmospheric pressure and storm).  More generally these models are incapable of 

distinguishing between direct and indirect causal relations, or covariations that are 

generated by hidden causal events (Waldmann, 1996; Waldmann & Hagmayer, in 

press).   

Another shortcoming of this focus on strength is that it restricts attention to a 

small subset of causal structures (mainly common-effect models).  For example, 

Power PC theory (Cheng, 1997) focuses on the assessment of causal strength based on 

covariation information. Although the main focus of the empirical studies lies in how 

people estimate causal power (see Buehner, Cheng, & Clifford, 2003), the theory 

clearly states that these power estimates are only valid under the assumption that the 

causal effect is generated by a common-effect structure with specific characteristics.  

The question of how people induce these models, which are a pre-requisite for the 

strength calculations, is neglected in this research.  Moreover, people routinely deal 

with other complex structures (e.g., common-cause and chain models). The question 

of how people learn such structures, and how they combine simple structures into 

more complex ones, are clearly crucial to a proper understanding of causal cognition. 

Furthermore, the focus on strength fails to give due weight to the importance 

of intervention (rather than passive observation), and to the temporal order of 

experienced events (over and above their temporal contiguity). Both of these factors 

are primarily cues to structure rather than strength, and there is growing evidence that 
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people readily use them (Gopnik et al., 2004; Lagnado & Sloman, 2004; Steyvers et 

al., 2003; Waldmann, 1996).  

Even the traditional studies on strength estimation are open to re-evaluation in 

the light of the structure/strength distinction. Tenenbaum and Griffiths (2001) contend 

that participants in these studies are actually assessing the degree to which the 

evidence supports the existence of a causal link, rather than the strength of that link. 

More generally, they propose that people adopt a two-step procedure to learn about 

elemental causal relations, first inferring structure, and then estimating strength. 

Although decisive experiments have yet to be run, Griffiths and Tenenbaum (in press) 

support this claim through the re-interpretation of previous data sets and some novel 

experimental results.  

The main moral to be drawn from these considerations is not that strength 

estimation has no place in causal learning, but that the role of structural inference has 

been neglected. By recognizing the central role it plays in both representation and 

learning, we can attain a clearer perspective on the nature of causal cognition. 

3. Causal-model theory 

Causal-model theory was a relatively early, qualitative attempt to capture the 

distinction between structure and strength (see Waldmann & Holyoak, 1992; 

Waldmann, Holyoak, & Fratianne, 1995; Waldmann, 1996; Waldmann, 2000, 2001; 

Waldmann & Martignon, 1998; Waldmann & Hagmayer, 2001; Hagmayer & 

Waldmann, 2002; see also Rehder, 2003a, b).  According to this proposal causal 

induction is guided by top-down assumptions about the structure of causal models.  

These hypothetical causal models guide the processing of the learning input.  The 

basic idea behind this approach is that we rarely encounter a causal learning situation 

in which we do not have some intuitions about basic causal features, such as whether 
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an event is a potential cause or effect.  If, for example, the task is to press a button and 

observe a light (e.g., Wasserman, Chatlosh, & Neunaber, 1983), we may not know 

whether these events are causally related or not, but we assume that the button is a 

potential cause and the light is a potential effect.  Once a hypothetical causal model is 

in place, we can start estimating causal strength by observing covariation information.  

The way covariation estimates are computed and interpreted is dependent on the 

assumed causal model (Waldmann & Hagmayer, 2001; Hagmayer & Waldmann, 

2002).  

 The distinction between causal structure and causal strength raises the 

question of how assumptions about causal models are generated.  Our working 

hypothesis is that people use a number of non-statistical cues to generate hypothetical 

causal models.  We do not rule out the possibility that people occasionally induce 

causal structure on the basis of covariation information alone, but this seems rare in 

the world in which we live. Whenever people do not have clear assumptions about 

causal structure, causal reasoning easily falls prey to cognitive biases, such as 

confusing spurious with causal relations.  In contrast, whenever people have 

hypothetical knowledge about causal structure they show a remarkable competence to 

tune this knowledge to the statistical relations in the learning input, and use this 

knowledge for predictions, diagnoses, and for planning actions.   

4. Cues to causal structure 

People are active agents immersed in a dynamic physical world. Not only do 

they experience events in a diversity of ways, but they experience a variety of 

relations between these events. Perhaps most significantly, they can also interact with 

the world, thereby creating new relations and disrupting old ones. The richness of 
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these experiences of the world affords people a variety of cues to its causal structure. 

Here is a partial list: 

• Statistical relations 

• Temporal order  

• Intervention  

• Prior knowledge  

Following Einhorn and Hogarth (1986), we note that these cues are fallible, 

sometimes redundant (separate cues support the same conclusion), and at other times 

inconsistent (separate cues suggest opposing conclusions). These cues can be 

combined to construct and update causal models. For example, typical cases of 

intervention combine multiple cues -- proximity in space and time, temporal order, 

and covariation. This synergy explains the power of intervention as a route to causal 

knowledge. Cues are generally strongly correlated in natural environments -- causes 

tend to be nearby, prior to, and correlated with their effects 

4.1 Statistical Covariation 

Hume’s analysis of causation has set the agenda for most contemporary 

theories of learning. These theories assume that causation cannot be perceived 

directly, and suppose that people infer it from the statistical patterns in what they can 

observe. The key idea is that people are exposed to patterns of data, such as the 

occurrence or non-occurrence of patterns of events, the presence or absence of 

features, or, more generally, the values of variables. From this body of data they 

extract certain statistical relations, upon which they base their causal judgments. 

There are various statistical relations that have been implicated in this process 

(Cheng, 1997; Glymour, 2001; Gopnik et al., 2004; Shanks, 2004). One of the 

simplest is the covariation between two events. For example, smoking increases the 
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probability of heart disease. The existence of a stable covariation between two events 

A and B is a good indication that some underlying causal relation exists, but by itself 

does not reveal whether A causes B, B causes A, or both are effects of a common 

cause. This highlights the incompleteness of any model of structure learning based 

solely on covariation detection. 

The advent of Bayesian networks provides a more general framework to 

represent the statistical relations present in a body of observed data (Pearl, 1988). As 

well as representing straightforward (unconditional) relations between variables, they 

also represent conditional relations. In particular they represent relations of 

conditional independence. This holds whenever an intermediate variable (or set of 

variables) renders two other variables (or sets of variables) probabilistically 

independent. For example, the unconditional dependence between intravenous drug 

usage and AIDS is rendered independent conditional on HIV status. In other words, 

the probability that someone develops AIDS, given that they are HIV positive, is not 

affected by whether they contracted the virus through drug use (assuming that drug 

usage does not affect the passage from HIV infection to AIDS). Establishing the 

conditional independencies that hold in a body of data is a critical step in constructing 

an appropriate Bayesian network. 

Recent work in statistics and AI forges a crucial link between statistical data 

and causal structure (Pearl, 2000; Spirtes et al., 1993). Given certain assumptions 

(e.g., the causal markov condition and faithfulness, see Woodward, this volume), they 

detail the patterns of dependencies that are associated with a given causal structure, 

and, conversely, the causal structures that can be inferred from a given pattern of 

dependencies. Based on this analysis a range of algorithms have been developed that 

can infer causal structure from large databases of statistical information. The success 
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of this computational work has prompted some to model human causal learning along 

similar lines (Glymour, 2001; Gopnik et al., 2004; see Section 7 for discussion). 

Despite the sophistication of Bayesian networks, it is generally recognized that 

statistical data alone is insufficient for inferring a unique causal model. Even with the 

notion of conditional independence, a particular body of correlational data will 

typically be associated with several possible causal structures (termed Markov 

equivalent) rather than a unique model. For example, if it is known that A, B and C 

are all correlated (unconditionally dependent), and that A is conditionally independent 

of C given B, then there are three possible causal structures compatible with these 

relations (A →B →C, A←B→C, A ← B ←C). To narrow down these possibilities to 

just one requires some additional information. For instance, if one also knows that A 

occurs before B, then A →B →C is the only possible model.  

This sets a theoretical limit on what can be inferred through correlation alone. 

At best statistical cues can narrow down the set of possible models to those that are 

Markov equivalent. There are also practical limitations. Even with just 3 variables 

there are a large number of correlations and conditional correlations to compute in 

order to determine viable causal models. And each of these relations requires a sizable 

amount of data before their individual reliability is established. Thus inferring 

possible causal models in a purely data-driven fashion involves a significant 

computational load. While this may be manageable by a powerful computer, it is less 

likely to be achievable by humans with limited processing and memory resources.  

Indeed current evidence suggests that people are rather limited in their ability 

to learn structure from correlations alone, even to Markov equivalence. For example, 

Lagnado and Sloman (2004) presented subjects with probabilistic data generated by a 

three variable chain A →B→ C. In the absence of other cues (intervention, time order 
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etc.), most subjects failed to learn the correct structure or its Markov equivalents. This 

result holds up across several different learning paradigms (Lagnado & Sloman, in 

preparation; Steyvers et al., 2003; Sobel, 2003; Danks & McKenzie, forthcoming).  

What people seem to find most difficult is establishing the appropriate 

conditional independence relations between sets of variables, and using this as a basis 

for inferences about causal structure. This is tricky because learners must track the 

concurrent changes in three different variables. They must determine whether the 

correlation between any pair of these variables is itself dependent on a third variable.  

For example, in Lagnado and Sloman (2004), participants had to figure out that (i) 

two different chemicals covaried with a given effect, and (ii) one of these chemicals 

was probabilistically independent of the effect conditional on the presence or absence 

of the other chemical. It is not surprising that most participants failed to work this out, 

and settled for a simpler (but incorrect) causal model. 

The experiments of Steyvers et al. (2003) also demonstrated the difficulty of 

inducing structure from covariation data.  In their experiments learners observed data 

about three mind-reading aliens.  The task was to find out which of the three mind-

readers can send messages (i.e., is a cause), and which can receive messages (i.e., is 

an effect).  Generally, performance was better than chance but was still poor.  For 

example, in Experiment 3 in which learners could select multiple models that are 

compatible with the data, only 20 percent of the choices were correct.  This number 

may even overstate what people can do with covariation alone.  In the experiments, 

learners were helped by the fact that the possible models were shown to them prior to 

learning.  Thus, their learning was not purely data driven but was possibly aided by 

top-down constraints on possible models.  Moreover, the parameters of the models 

were selected to make the statistical differences between the models quite salient.  For 
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example, the pattern that all three mind-readers had the same thought was very likely 

when the common-cause model applied but was extremely unlikely under a common-

effect model.  Similarly, the pattern that only two aliens had the same thought was 

very likely under the common-effect model hypothesis but unlikely with chains or 

common-cause models.  Under the assumption that people associate these different 

prototypic patterns (e.g., three mind readers with identical thoughts) with different 

causal structures (e.g., common-cause model), some participants might have solved 

the task by noticing the prevalence of one of the prototypic patterns. Additional cues 

further aided induction.  As in Lagnado and Sloman (2004) performance improved 

when participants were given the opportunity to add an additional cue, interventions 

(see also Sobel, 2003; and Section 4.3). 

 In sum, there is very little evidence that people can compute the conditional 

dependencies necessary for inferring causal structure from statistical data alone 

without any further structural constraints.  In contrast, when people have some prior 

intuitions about the structure of the causal model they are dealing with, learning data 

can be used to estimate parameters within the hypothetical model, or to select among 

alternative models (see also Waldmann, 1996; Waldmann & Hagmayer, 2001).  Thus, 

the empirical evidence collected so far suggests that cues other than statistical 

covariation take precedence in the induction of structure before statistical patterns can 

meaningfully be processed.  In the next section we show that the temporal order cue 

can override statistical covariation as a cue to causal structure. 

4.2 Temporal Order 

The temporal order in which events occur provides a fundamental cue to 

causal structure. Causes occur before (or possibly simultaneously with) their effects, 

so if one knows that event A occurs after event B, one can be sure that A is not a 
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cause of B. However, while the temporal order of events can be used to rule out 

potential causes, it does not provide a sufficient cue to rule them in. Just because 

events of type B reliably follow events of type A, it does not follow that A causes B. 

Their regular succession may be explained by a common cause C (e.g., heavy 

drinking first causes euphoria and only later causes sickness). Thus the temporal order 

of events is an imperfect cue to causal structure. This is compounded by the fact that 

we often do not have direct knowledge of the actual temporal order of events, but are 

restricted to inferring that order from the order in which we experience (receive 

information about) these events. In many situations the experienced order will reflect 

the true temporal order, but this is not guaranteed. Sometimes one learns about effects 

prior to learning about their causes. For example, the presence of a disease is typically 

learned about after experiencing the symptoms that it gives rise to (see Section 4.4 for 

further examples). 

Despite its fallibility, temporal order will often yield a good cue to causal 

structure, especially if it is combined with other cues. Thus, if you know that A and B 

covary, and that they do not have a common cause, then discovering that A occurs 

before B tells you that A causes B and not vice versa. It is not surprising therefore that 

animals and humans readily use temporal order as a guide to causality. Most previous 

research, however, has focused on how the temporal delay between events influences 

judgments of causal strength, and paid less attention to how temporal order affects 

judgments of causal structure. The main findings have been that judged causal 

strength decreases with increased temporal delays (Shanks, Pearson & Dickinson, 

1989), unless people have a good reason to expect a delay (e.g., through prior 

instructions or knowledge, see Buehner & May, 2002). This fits with the default 

assumption that the closer two events are in time, the more likely they are to be 



Beyond Covariation 14

causally related. In the absence of other information, this will be a useful guiding 

heuristic. 

Temporal Order versus Statistical Data 

Both temporal order and covariation information are typically available when 

people learn about a causal system. These sources can combine to give strong 

evidence in favor of a specific causal relation, and most psychological models of 

causal learning take these sources as basic inputs to the inference process. However, 

the two sources can also conflict. For example, consider a causal model in which C is 

a common cause of both A and B, and where B always occurs after A. The temporal 

order cue in this case is misleading, as it suggests that A is a cause of B. This 

misattribution will be particularly compelling if the learner is unaware of C.  

However, consider a learner who also knows about C. With sufficient exposure to the 

patterns of correlation of A, B and C they would have enough information to learn 

that A is probabilistically independent of B given C.  Together with the knowledge 

that C occurs before both A and B the learner can infer that there is no causal link 

from A to B (without such temporal knowledge about C, they can only infer that A is 

not a direct cause of B, because the true model might be a chain A→C→B). 

 In this situation the learner has two conflicting sources of evidence about the 

causal relation between A and B – a temporal order cue that suggests that A causes B 

and (conditional) correlational information that there is no causal link from A to B. 

Here a learner must disregard the temporal order information and base their structural 

inference on the statistical data. However, it is not clear how easy it is for people to 

suppress the temporal order-based inference, especially when the statistical 

information is sparse. Indeed in two psychological studies Lagnado and Sloman 
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(2004, in preparation) show that people let the temporal order cue override contrary 

statistical data.   

To explore the impact of temporal order cues on people’s judgments about 

causal structure, Lagnado and Sloman (in preparation) constructed an experimental 

learning environment in which subjects used both temporal and statistical cues to infer 

causal structure. The underlying design was inspired by the fact that viruses 

(electronic or otherwise) present a clear example of how the temporal order in which 

information is received need not reflect the causal order in which events happen. This 

is because there can be considerable variability in the time of transmission of a virus 

from computer to computer, as well as variability in the time it takes for an infection 

to reveal itself. Indeed it is possible that a virus is received and transmitted by a 

computer before it reveals itself on that computer. For example, imagine that your 

office-mate’s computer becomes infected with an email virus that crashes his 

computer. Twenty minutes later your computer crashes too.  A natural reaction is to 

suppose that his computer transmitted the virus to you; but it is possible that your 

computer received the virus first, and then transmitted it to your office-mate. It just so 

happened that the virus subverted his computer more quickly than yours. In this case 

the temporal order in which the virus manifests itself (by crashing the computer) is 

not a reliable cue to the order in which the computers were infected. 

In such situations, then, the order in which information is received about 

underlying events (e.g., the order in which viruses manifest themselves on computers 

in a network) does not necessarily mirror the underlying causal order (e.g., the order 

in which computers are infected). Temporal order is a fallible cue to causal structure. 

Moreover, there might be statistical information (e.g., the patterns of correlation 

between the manifestations of the viruses) which does provide a veridical cue to the 
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underlying structure. How do people combine these two sources of information, and 

what do they do when these sources conflict?  

In Lagnado and Sloman’s (in preparation) experiment participants had to learn 

about the connections in a simple computer network. To do so, they sent test 

messages from a master computer to one of four computers in a network, and then 

observed which of the other computers also received the messages. They were able to 

send 100 test messages before being asked about the structure of the network. 

Participants completed four tasks, each with a different network of computers. They 

were instructed that there would sometimes be delays in the time taken for the 

messages to be transmitted from computer to computer. They were also told that the 

connections, where they existed, only worked 80% of the time. (In fact the 

probabilistic nature of the connections is essential if the structure of the network is to 

be learnable from correlational information. With a deterministic network all the 

connected computers would covary perfectly, so it would be impossible to figure out 

the relevant conditional independencies.)  

Unknown to participants, the networks in each problem had the same 

underlying structure, and only differed in the temporal order in which the computers 

displayed their messages. The four different temporal orderings are shown in Figure 

2, along with the links endorsed by the participants in the test phase. When the 

temporal ordering reflected the underlying network structure, the correct model was 

generally inferred. When the information was presented simultaneously learners did 

less well (adding incorrect links) but still tended to capture the main links. When the 

temporal ordering conflicted with the underlying structure, participants erroneously 

added links that fitted with the temporal order but that did not correspond to the 

underlying structure.  
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Figure 2. Model choices for the four temporal conditions in Lagnado and Sloman (in 
preparation). Note: only links endorsed by > 50% participants are shown, and the 
thickness of the arrows corresponds to the percentage of participants selecting that 
link (thickest link is = 100%). 

 

In sum, people allowed the temporal ordering to guide their structural 

inferences, even when this conflicted with the structure implied by the correlational 

information. However, this did not amount to a total disregard of the correlational 

information. For example, in the problem with temporal ordering ABDC (top right 

panel in Figure 2), participants erroneously endorsed the link from D to C (as 

suggested by the temporal order) but also correctly added the link from A to C. We 

hypothesize that they first used the temporal ordering to set up an initial model 

(A→B→D→C). This model would be confirmed by most of the test trials. However, 

occasionally they saw a test pattern that contradicted this model (A, B, not-D, C). To 

accommodate this new evidence, they added a link from B to C, but did not remove 

the redundant link from D to C, because this still fit with the temporal ordering.  

Interpreted within the causal-model framework, this study shows that people 

use both temporal order and correlational cues to infer causal structure.  It also 

suggests that they construct an initial model on the basis of the temporal ordering 



Beyond Covariation 18

(when available), and then revise this model in the light of the covariational 

information. However, due to the persisting influence of the temporal order cue, these 

revisions may not be optimal.  

Although the reported study highlights how people can be misled by an 

inappropriate temporal ordering, in many contexts the temporal cue will reliably 

indicate the correct causal structure. As with other mental heuristics, its fallibility 

does not undermine its effectiveness in most naturalistic learning situations. It also 

works best when combined with other cues. In the next section we shall examine how 

it combines with interventions.  

4.3 Intervention 

Various philosophers have argued that the core notion of causation involves 

human intervention (Collingwood, 1940; Hart & Honore, 1983; Von Wright, 1971). It 

is through our actions and manipulations of the environment around us that we 

acquire our basic sense of causality. Several important claims stem from this: that 

causes are potential handles upon the world; that they ‘make a difference’; that they 

involve some kind of force or power. Indeed the language and metaphors of causal 

talk are rooted in this idea of human intervention on a physical world. More 

contemporary theories of causality dispense with its anthropomorphic connotations, 

but maintain the notion of intervention as a central concept (Glymour, 2001; Pearl, 

2000; Spirtes et al., 1993; Woodward, 2003). 

 Intervention is not only central to our notion of causation. It is a fundamental 

means by which we learn about causal structure. This has been a commonplace 

insight in scientific method since Bacon (1620) spoke of ‘twisting the lion’s tail’, and 

was refined into axioms of experimental method by Mill (1843). More recently, it has 
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been formalized by researchers in AI and philosophy (Spirtes et al., 1993; Pearl, 2000; 

see Hagmayer et al., this volume).  

 The importance of intervention in causal learning is slowly beginning to 

permeate through to empirical psychology. Although it has previously been marked in 

terms of instrumental or operant conditioning (Mackintosh & Dickinson, 1979), the 

full implications of its role in causal structure learning had not been noted. This is 

largely due to the focus on strength estimation rather than structural inference.  Once 

the emphasis is shifted to the question of how people infer causal structure, the notion 

of an intervention becomes critical.   

 Informally, an intervention involves imposing a change on a variable in a 

causal system from outside the system. A strong intervention is one that sets the 

variable in question to a particular value, and thus overrides the effects of any other 

causes of that variable. It does this without directly changing anything else in the 

system, although of course other variables in the system can change indirectly as a 

result of changes to the intervened-on variable (a more formal definition is given by 

Woodward, this volume).  

An intervention does not have to be a human action (cf. Mendelian 

randomization, Davey Smith & Ebrahim, 2003), but freely chosen human actions will 

often qualify as such.  These can range from carefully controlled medical trials to the 

haphazard actions of a drunk trying to open his front door. Somewhere in between 

lays the vast majority of everyday interventions. What is important for the purposes of 

causal learning is that an intervention can act as a quasi-experiment, one that 

eliminates (or reduces) confounds and helps establish the existence of a causal 

relation between the intervened-on variable and its effects.  
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A central benefit of an intervention is that it allows one to distinguish between 

causal structures that are difficult or impossible to discriminate amongst on the basis 

of correlational data alone. For example, a high correlation between bacteria and 

ulcers in the stomach does not tell us whether the ulcers cause the bacteria or vice-

versa (or, alternatively, if both share a common cause). However, suppose an 

intervention is made to eradicate the bacteria (and that this intervention does not 

promote or inhibit the presence of ulcers by some other means). If the ulcers also 

disappear, one can infer that the bacteria cause the stomach ulcer and not vice versa. 

Intervention aids learning 

Can people make use of interventions in order to learn about causal structure? 

Several studies have compared learning through intervention with learning through 

observation (Lagnado & Sloman, 2002, 2004; Sobel, 2003; Steyvers et al., 2003). All 

these studies have shown a distinct advantage for intervention. When participants are 

able to freely intervene on a causal system they learn its structure better than when 

they are restricted to passive observation of its autonomous behavior.  

  What are the factors that drive this advantage? In addition to the special kind 

of information afforded by intervention, due to the modification of the system under 

study, interventions can facilitate learning in several other ways. For instance, an 

intervener has more control over the kind of data they see, and thus can engage in 

more directed hypothesis testing than an observer. Intervention can also focus 

attention on the intervened-on variables and its effects. Further, the act of intervention 

introduces an implicit temporal cue into the learning situation, because interventions 

typically precede their effects. Interveners may use any of these factors to enhance 

their learning.   
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By using yoked designs Lagnado and Sloman (2004, in preparation) ruled out 

the ability to hypothesis-test as a major contributor in their experiments (though Sobel 

& Kushnir, 2003, report conflicting results). However, they also showed that the 

presence of a temporal cue had a substantial effect.  When the information about the 

variables in the causal system was presented in a temporal order that matched the 

actual causal order (rather than being inconsistent with it) learning was greatly 

facilitated, irrespective of whether participants were intervening or observing. The 

authors suggested that in general people might use a temporal order heuristic whereby 

they assume that any changes that occur subsequent to an action are effects of that 

action. This can be an effective heuristic, especially if these actions are unconfounded 

with other potential causes of the observed effects. Such a heuristic can also be used 

in observation, but is more likely to lead to spurious inferences (because of 

unavoidable confounding).  

An online learning paradigm 

Although all of the studies reported so far demonstrate an advantage of 

intervention, they also reveal low levels of overall performance. Even when learners 

were able to intervene, many failed to learn the correct model (in most of the 

experiments less than 40% chose the correct models). We conjecture that this is due to 

the impoverished nature of the learning environment presented to participants. All of 

the studies used a trial-based paradigm, in which participants viewed the results of 

their interventions in a case-by-case fashion. And the causal events under study were 

represented by symbolic descriptions rather than being directly experienced (cf. 

Waldmann & Hagmayer, 2001). This is far-removed from a naturalistic learning 

context. Although it facilitates the presentation of the relevant statistical 

contingencies, it denies the learner many of the cues that accompany real-world 
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interventions like spatiotemporal information, immediate feedback, and continuous 

control.  

To address this question, Lagnado and Sloman (in preparation) introduced a 

learning paradigm that provided some of these cues; participants manipulated on-

screen sliders in a real-time environment. Participants had to figure out the causal 

connections between the sliders by freely changing the settings of each slider, and 

observing the resultant changes in the other sliders. In these studies the majority of 

learners (greater than 80%) rapidly learned a range of causal models, including 

models with four inter-connected variables. This contrasted with the performance of 

observers, who watched the system of sliders move autonomously, and seldom 

uncovered the correct model. Thus the benefits of intervention seem to be greatly 

magnified by the dynamic nature of the task. This reinforces our claim that causal 

cognition operates best when presented with a confluence of cues and, in particular, 

that intervention works best when combined with spatiotemporal information.   

In addition, in a separate condition many learners were able to make use of 

double interventions to disambiguate between models indistinguishable through single 

interventions. For example, when restricted to moving one slider at a time it is 

impossible to discriminate between a three variable chain A→B→C, and a similar 

model with an extra link from A to C. However, with an appropriate double 

intervention (e.g., fixing the value of B, and then seeing whether manipulation of A 

still leads to a change in C) these models can be discriminated. The fact that many 

participants were able to do this shows that they can reason using causal 

representations (cf. Hagmayer et al., this volume). They were able to represent the 

two possible causal models, and work out what combination of interventions would 

discriminate between them.   
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Intervention vs. temporal order  

The trial-based experiments by Lagnado and Sloman (2004) show that 

temporal order plays a substantial role in causal learning. However, the low levels of 

performance made it difficult to assess the separate influences of intervention and 

temporal order cues. A subsequent study by Lagnado and Sloman (in preparation) 

used the slider paradigm to investigate this question. Participants completed six 

problems, ranging from two-variable to four-variable models. They were divided into 

three groups: those who could freely intervene on the causal system, those who 

observed the system’s behavior, and those who observed the results of another 

person’s interventions (yoked to the active interveners). Within each group 

participants were presented with information about the slider values in two temporal 

orders, either consistent with, or opposite to, the underlying causal structure. The 

main results are shown in Figure 3 (where the intervention group is denoted by 

intervention1). There is a clear advantage of intervention (active or yoked) over 

observation. There is also a clear influence of temporal consistency for the 

observational and yoked groups, but not for the active interveners. The authors 

conjectured that the active interveners overcame the inconsistent temporal order cue 

by (correctly) learning that the variable information was presented in reverse order.  

To test this they ran a second intervention condition in which the temporally 

inconsistent time order was randomized rather than reversed (with the constraint that 

it could never produce a consistent order). The results for this follow-up are also 

shown in Figure 3 (the new intervention group is intervention2). The interveners now 

showed a similar decline in performance when information was presented in an 

inconsistent order. Overall these results confirm that intervention and temporal order 

provide separate cues to causal structure. They work best, however, in combination, 
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and this may explain the efficacy of interventions made in naturalistic learning 

environments.    
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Figure 3.  Percent correct model choices in Lagnado and Sloman (in preparation) 
showing influence of intervention and temporal order. Note: in intervention2 time 
inconsistent orders were randomized rather than reversed.  
 
 
4.4 Prior Knowledge 

 Temporal order is a powerful cue to causality in situations in which we 

experience causal events on-line.  Whenever we directly experience causal events the 

sequence of the learning input (i.e., learning order) mirrors the asymmetry of causal 

order (causes generate effects but not vice versa). The correlation between learning 

order and causal order is so strong in these situations that some theories (e.g., 

associative learning models) collapse causal order and learning order by assuming 

that learning generally involves associations between cues and outcomes with cues 

presented temporally prior to their outcomes (see Shanks & Lopez, 1996; Waldmann, 

1996, 2000).   
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 However, whereas nonhuman animals indeed typically experience causes prior 

to their effects, the correlation between learning order and causal order is often broken 

when learning is based on symbolized representations of causal events.  In fact, most 

experimental studies of human learning are nowadays carried out on a computer in 

which cues and outcomes are presented verbally.  The flexibility of symbolic 

representations allows it to present effect information prior to cause information so 

that learning order no longer necessarily corresponds to causal order.  For example, 

many experiments have studied disease classification in which symptoms (i.e., effects 

of diseases) are presented as cues prior to information about their causes (i.e., 

diseases; e.g., Gluck & Bower, 1988; Shanks & Lopez, 1996; Waldmann, 2000, 

2001).  

 Learning order and causal order may also mismatch when the causal events 

are not readily observable but have to be measured or searched with more 

complicated procedures.  For example, a physician may immediately observe 

symptoms of a new patient prior to searching for possible causes.  Or parents might 

become aware of school problems of their child prior to finding out about the causes.  

Thus, although the temporal order of learning events is often a valid cue to causal 

structure, it is sometimes necessary to override this cue when other cues appear more 

valid. 

 Coherence with prior knowledge is a potent cue to causal structure.  

Regardless of when we observe fever in a patient, our world knowledge tells us that 

fever is not a cause but rather an effect of an underlying disease.  Prior knowledge 

may be very specific when we have already learned about a causal relation, but prior 

knowledge can also be abstract and hypothetical.  We know that switches can turn on 

devices even when we do not know about the specific function of a switch in a novel 
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device.  Similarly we know that diseases can cause a wide range of symptoms prior to 

finding out which symptom is caused by which disease.  In contrast, rarely do we 

consider symptoms as possible causes of a disease. 

Prior Knowledge versus Temporal Order 

The possible mismatch between causal order and learning order raises the 

question whether people are capable of ignoring the temporal order of learning events 

when their prior knowledge suggests a different causal order.  Following the 

framework of causal-model theory, Waldmann and Holyoak (1990, 1992) developed 

an experimental paradigm addressing this question.  In general, learners in different 

conditions receive identical cues and outcomes in identical learning order.  However, 

based on initial instructions different causal orders are suggested so that in one 

condition the cues represent causes and the outcomes effects (predictive learning), 

whereas in the contrasting condition the cues represent effects and the outcomes 

causes (diagnostic learning).   

 A recent study by Waldmann (2001) exemplifies this paradigm.  In 

Experiment 2 of Waldmann (2001), participants were told that they are going to learn 

about new diseases of the blood.  In all conditions learners observed learning trials in 

which they first received information about the presence of a Substance 1 in a patient 

followed by feedback about the presence of a disease (e.g., Midosis).  Other trials 

showed patients whose blood contained two substances, Substance 2 and 3, which 

were a sign of a different disease (e.g., Xeritis).  Associative learning theories are only 

sensitive to learning order and would therefore generally predict that the associative 

strength between Substance 1 and Midosis should be greater than between the two 

other substances and Xeritis (see Cobos et al., 2002).  This so called overshadowing 

effect falls out of associative learning theories (e.g., Rescorla & Wagner, 1972) which 
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predict that the two redundant always co-occurring substances compete for predicting 

Xeritis. Once asymptotic performance is achieved this should lead to either substance 

contributing only about half of the associative strength needed to correctly predict the 

disease.  

 To pit learning order against causal order, Waldmann (2001) created two 

contrasting conditions: In the predictive-learning condition the substances were 

described as coming from food items, which gives them the status of potential causes 

of the diseases (see Figure 2).  In contrast, in the diagnostic-learning condition the 

substances were characterized as being potentially generated by the diseases, which 

assigns them the causal status of effects.  Although, cues, outcomes, and learning 

order were identical in both conditions, overshadowing interacted with causal status.  

Overshadowing was stronger in the predictive than in the diagnostic-learning 

condition. Similar interactions have also been shown for the related blocking 

phenomenon (Waldmann & Holyoak, 1992; Waldmann, 2000; Waldmann & Walker, 

in press).  

 

A B

Effect Cause
(disease) (disease)

Cause Cause Effect Effect
(substance) (substance)(substance) (substance)

Figure 2. Predictive-learning (A) and diagnostic-learning (B) in Waldmann (2001). 
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This interaction can be modeled by an account that assumes that people use 

prior knowledge conveyed to them through the cover stories to form tentative causal 

models with the structures displayed in Figure 2 (see Waldmann & Martignon, 1998, 

for a Bayesian causal-model account).  These models free learners from learning 

order as a cue to causality, and allow them to flexibly assign the learning input to the 

causal variables in the tentative causal model.  Thus, in the predictive-learning 

condition the cues are being mapped to the cause layer and the effects to the outcome 

layer (Figure 2, A), whereas in the diagnostic-learning condition the cues are being 

mapped to the effect layer and the outcomes to the cause layer (Figure 2, B).  

Although prior knowledge generates the structure of the causal models underlying the 

learning domain, the cover stories made it clear to participants that the causal relations 

were only hypothetical and needed to be verified by checking the learning data.  Thus, 

in the learning stage the learning input is used to parameterize the model or test 

whether the hypothesized links are present.   

 The overshadowing study illustrates this account (Waldmann, 2001).  In 

Experiment 2 learners observed Substance 1 by itself as a deterministic cause 

(predictive learning) or a deterministic effect (diagnostic learning).  However, the 

situation differed across the two learning conditions for the two redundant substances.  

In the diagnostic-learning condition the data suggest that each of the two substances is 

deterministically caused by their common cause, the disease Xeritis (see Figure 2, B).  

Although there may be alternative unknown diseases also affecting these symptoms, 

these alternative causes were not mentioned in the instructions so that their potential 

impact on learners’ assessment should be relatively small.  By contrast, in the 

predictive-learning condition, learners were confronted with an ambiguous situation.  

Here the two substances represented perfectly confounded alternative potential causes 
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so that it was impossible to determine whether only one of these potential causes was 

effective, or whether both shared responsibility in generating the common effect, 

Midosis (see Figure 2, A).  Thus, learners should have been uncertain about their 

causal status, which would lead to a lowering of ratings (i.e., overshadowing).  This 

pattern was indeed found in the study. 

 Temporal order of learning events was also pitted against causal order in other 

task domains.  In a study on category learning, Waldmann, Holyoak, and Fratianne 

(1995) have shown that sensitivity to correlations among cues is influenced by the 

causal status of the cues (see also Rehder & Hastie, 2001; Rehder, 2003a, b). As 

predicted by Bayesian models, when the cues represent effects within a common-

cause model, learners expected cue correlations, whereas statistical independence 

among cues is expected when they represent multiple causes of a common effect.  

These expectations influenced how difficult it was for participants to learn about 

different category structures.  Again these findings support the view that learners 

formed a structural representation of a causal model on the basis of the initial 

instructions, and then tried to map these models to the learning data (see Waldmann & 

Martignon, 1998, for the formal details).  

Prior Knowledge and Parameter Estimation 

Even when causal order and temporal order coincide, temporal order alone is 

not sufficiently constrained to determine how learning events should be processed.  In 

a stream of learning events, the relevant events need to be parsed first, and then it is 

necessary to decide how the events are interrelated.  Often this problem is solved by 

assuming that events that are spatiotemporally contiguous (see Section 4.2) are 

interrelated. But this is not always true.  For example, when eating a fish dish we 

would not view the fish as a cause of a subsequent nausea that occurred within 0.5 
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seconds of eating the meal.   Based on prior knowledge, we expect a longer latency of 

the causal mechanism.  In contrast, we would not relate a light to a button press if 

there was a latency of 10 seconds between pressing the button and the light going on.   

 Hagmayer and Waldmann (2002) have shown that prior expectations about 

temporal delays between causes and effects indeed mediate how causes and effects 

are interrelated within a stream of events.  This selection consequently affects how 

causal strength is estimated within the data set.  Despite observing identical event 

streams, different assessments of causal strength resulted based on how the stream 

was parsed and how the events were interrelated prior to assessing the strength of 

covariation. 

 Prior assumptions also affect what statistical indicators are chosen to estimate 

causal strength parameters.  When the task is to estimate causal strength between a 

cause and effect, it is necessary to compute the covariation between these events 

while holding constant alternative causes that may confound the relation.  For 

example, the strength of the causal influence of smoking on heart disease should 

ideally be assessed when alternative causes of heart disease (e.g., junk food) are 

absent or held constant.  In contrast, causally irrelevant events, alternative effects of 

the target cause (within a common-cause model), or events that lie downstream on a 

causal chain between the target cause and the target effect must not be held constant 

(Eells, 1991; Pearl, 2000).  Otherwise, erroneous parameter estimates might result.  

 Waldmann and Hagmayer (2001) have shown that participants are indeed 

sensitive to these normative constraints.  In a set of experiments, learners were given 

identical learning input with three interrelated events.  Participants’ task was to assess 

the strength of the causal relation between a given cause and an effect.  The causal 

status of the third event was manipulated by means of initial instructions.  The results 
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showed that learners only tended to hold the third event constant when this event was 

assumed to be an alternative cause of the target effect.  When it was causally 

irrelevant, an alternative effect of the cause or an intermediate event on a causal chain 

between cause and effect, participants ignored the status of the third variable.  Again 

this is a case in which temporal order is an insufficient cue because the learning 

events were presented identically to all participants.  The correct parameter estimates 

depended on prior knowledge about the causal status of the learning events. 

Use of Prior Knowledge and Processing Constraints 

Processing learning data on the basis of a prior causal model can be 

demanding.  For example, in a diagnostic learning task the learning order of cues and 

outcomes conflicts with causal order.  Also holding constant alternative causes can 

sometimes be difficult when the presence and absence of the alternative cause 

alternates so that it is hard to separately store in memory the events in which the 

confound was present and absent.  A number of recent studies have shown that in 

situations that tax processing capacity, people may incorrectly process the learning 

data, although in less complex tasks they do better (De Houwer & Beckers, 2003; 

Tangen & Allan, 2004; Waldmann & Hagmayer, 2001; Waldmann & Walker, in 

press).  Waldmann and Walker (in press) have additionally shown that it is crucial 

that people have a strong belief in the validity of the causal model; otherwise their 

learning is dictated by other cues that require less effort to use.  These studies show 

that people have the competence to correctly interrelate causal models and learning 

data, when they strongly believe in their prior assumptions and when the learning task 

is within the grasp of their information processing capacity.  Otherwise, other cues 

may dominate.  
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5. Integrating Fragments of Causal Models 

We rarely acquire knowledge about a complex causal network all at once. 

Rather we learn about these models in a piecemeal fashion. Consider, for example, the 

search for the causes of ulcer by medical science (see Thagard, 1999, for a detailed 

description of the history of medical theories of ulcer).  It was first thought that ulcers 

were caused by excessive acid in the stomach, which was caused by stress.  Later on 

scientists found out that excessive acidity is not the cause of many ulcers, but that the 

majority of ulcers are caused by bacteria (helicobacter pyloris). Additionally, it was 

discovered by other researchers that some acid-based pain relievers, such as aspirin, 

might also cause ulcers.  As a consequence, an initially simple causal-chain model 

(stress→ excessive acid →ulcer) was replaced by a more complex causal model (see 

Figure 1). Theory change occurred as a result of many independent empirical studies 

that focused on individual links.  These individual pieces of knowledge were 

eventually integrated into a coherent, global causal model that incorporated what we 

now know about ulcers. 

 Similarly in everyday life we may independently learn that peanuts cause an 

allergy, and later discover that strawberries cause the same allergy.  Although we may 

never have eaten peanuts and strawberries together, we could still integrate these two 

pieces of causal knowledge into a common-effect model.  Similarly, we might 

independently learn about two causal relations in which the same common cause is 

involved.  For example, we may first experience that aspirin relieves headache. Later 

a physician might tell us that our ulcer is also caused by aspirin.  Again, although we 

may never have consciously experienced the two effects of the common cause 

together, we can integrate the two fragments into a coherent common-cause model. 
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What is the advantage of integrating fragments of causal knowledge into a 

coherent global causal model? Despite representing only the direct causal relations 

within the model (i.e., causes, effects, and causal arrows), causal models allow us to 

infer the relation between any pair of events within the model, even when they are not 

directly causally connected.  For example the causal model for aspirin would imply 

that relief of headache and ulcer should tend to co-occur despite not being causally 

related to each other.  These structural implications are a consequence of the patterns 

of causal directionality inherent in causal models.   

Bayes nets provide formal tools to analyze structural implications of causal 

models (see Pearl, 1988, 2000; Spirtes et al., 1993). The graph of a common-cause 

model expresses that the two effects are spuriously related (due to their common 

cause) but become independent, once the state of the common cause is known (see 

Figure 2, B).  This is a consequence of the Markov condition.  For example, once we 

know that aspirin is present, the probability of ulcers is fixed regardless of whether 

headache is present or absent. Similarly, causal chains imply that the initial cause and 

the final effect are dependent but become independent when the intermediate event is 

held constant.  Finally, a common-effect model (Figure 2, A) implies independence of 

the alternative causes, but they become dependent once the common effect is held 

constant.  This is an example of explaining away.  Eating peanuts and eating 

strawberries should normally occur independently.  But once we know that someone 

has an allergy, finding out that they have eaten peanuts makes it less likely that they 

have also eaten strawberries.  

Hagmayer and Waldmann (2000, forthcoming) have investigated the question 

of whether people are capable of integrating fragments into global causal models in a 

normative fashion (see also Ahn & Dennis, 2000; Perales, Catena, & Maldonado, 
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2004).  In a typical experiment participants had to learn about the causal relations 

between the mutation of a fictitious gene and two substances.  The two relations were 

learned on separated trials so that no information about the covariation between the 

two substances was available.  Although the learning input was identical, the 

underlying causal model differed in different conditions.  To manipulate causal 

models participants were either told that the mutation of the fictitious gene was the 

common cause of two substances, or they were told that the two substances were 

different causes of the mutation of the gene.  The strength of the causal relations was 

also manipulated to test whether people are sensitive to the size of the parameters 

when making predictions. 

The main goal of the study was to test under which conditions people are 

aware of the different structural implications of the common-cause and the common-

effect model.  A correlation should be expected between the two substances when 

they were caused by a common cause with the size of the correlation being dependent 

on the size of causal strength.  By contrast, two causes of a common effect should be 

independent regardless of the size of the causal relations. 

To test sensitivity to structural implications, participants were given two tasks: 

In the first task, participants were given new cases along with information about 

whether a mutation had occurred or not.  Their task was to predict on each trial 

whether either of the two substances was present or absent.  Thus, in the common-

cause conditions people predicted the presence or absence of the two effects based on 

information about the presence or absence of the common cause, in the common-

effect condition people diagnosed the presence or absence of either cause based on 

information about the presence or absence of the common effect. This way, 

participants made predictions for the two substances they had never observed 
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together.  Across multiple predictions participants generated a correlation between the 

two substances that could be used as an indicator of sensitivity to the implied 

correlations.  The second task asked participants directly to estimate the conditional 

frequency of the second substance given that the first substance was present or absent.  

The two tasks assess sensitivity to structural implications in different ways. 

Whereas the second task assessed more explicit knowledge of the structural 

implications of causal knowledge, the first task required participants to use the causal 

models to predict patterns of events.  Thus this task probes sensitivity to structural 

implications in a more implicit fashion.  For example, in the common-cause condition 

a possible strategy would be to run a mental simulation of the underlying common-

cause model. Whenever the presence of the common cause is stated in the test trial, 

the two effects could be individually predicted with probabilities that conform to the 

learned strength of the causal relation.  This strategy would yield the normatively 

implied spurious correlation between the substances although the predictions focused 

on the individual links between the common cause and either effect.  Similarly, in the 

common-effect condition people could simulate diagnoses of the two causes based on 

information about the presence or absence of the common effect by running the causal 

model backward from effect to causes (see Figure 2, A).  Simultaneous diagnoses of 

either cause should make participants aware of the possible competition between the 

causes.  Since either cause suffices to explain the effect, people should be reluctant to 

predict both causes too often.  This would yield correct diagnoses of the patterns of 

causes without requiring participants to directly reflect on the correlation between 

alternative causes.  

The results of this and other experiments show little sensitivity to the 

differences between common-cause and common-effect models in the explicit 
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measure.  Although some basic explicit knowledge cannot be ruled out (see also 

Perales et al., 2004), Hagmayer and Waldmann’s (2000, in preparation) experiments 

show that people do not use the strength parameters to predict the implied correlations 

very well.  By contrast, the implicit tasks revealed patterns that corresponded 

remarkably well to the expected patterns.  Whereas a spurious correlation was 

predicted in the common-cause condition, the predicted correlation stayed close to 

zero in the common-effect condition.  Hagmayer and Waldmann attribute this 

competency to mental simulations of causal models. 

Further experiments by Hagmayer and Waldmann (in preparation) explored 

the boundary conditions for these effects.  The dissociation between explicit and 

implicit knowledge disappeared with causal chains in which the individual links were 

taught separately, and in which the task in the test phase was to predict the final effect 

based on information about the initial cause (see also Ahn & Dennis, 2000).  In this 

task, both explicit and implicit measures were sensitive to the implied correlation 

between these two events.  This result shows that spurious relations (e.g., between 

two effects of a common cause) need to be psychologically distinguished from 

indirect causal relations.  Whereas people obviously have little explicit knowledge 

about spurious relations they may view indirect relations as a subdivided global causal 

relation.  In fact, all direct causal relations can be sub-divided into chains that 

represent the underlying mechanisms. Thus, combining links of causal chains into a 

global prediction is easier than deriving prediction for spurious relations. 

The implicit task also turned out to be sensitive to boundary conditions.  

Whereas performance for the common-cause model and the chain model showed 

fairly robust sensitivity to spurious and indirect relations, it turned out that people’s 

implicit estimates in the common-effect condition are only adequate when the task 
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required them to predict patterns of causes, as in the experiment described above.  In 

this task the links of the causal models were simulated in parallel, which apparently 

proved important for making learners aware of the implied competition among the 

causes.  When the task was to first predict the effect based on one cause, and then 

make inferences about the other cause, people erroneously predicted a spurious 

correlation between the causes.  Probably participants accessed each link 

consecutively and tended to forget about the possible competition between the causes. 

In sum, people are capable of integrating fragments of causal knowledge in a 

way that corresponds to the normative analyses of Bayes nets.  However, this 

competency is not as robust as the computer models used to implement Bayes nets. It 

rather depends on a number of task factors that include the type of relation within a 

causal model, and the specifics of the task.   

6. Computational models of learning  

Although our main concern has been with how people learn causal structure, 

the story we have told is linked in important ways to current computational models of 

inference and learning. For one, the Causal Bayesian network formalism (Spirtes et 

al., 1993; Pearl, 2000) offers a normative framework for causal representation and 

inference. And at a qualitative level human inference seems to fit with the broad 

prescriptions of this theory (see Hagmayer et al., this volume; Sloman & Lagnado, 

2004, 2005). The Causal Bayesian network framework also suggests various 

computational procedures for learning causal structure. These are often grouped into 

two types – Bayesian methods (Heckerman, Meek & Cooper, 1999) and constraint-

based methods (Spirtes et al., 1993). It is instructive to compare and contrast these 

approaches as models of human learning, in the light of the proposals and empirical 

evidence surveyed in this chapter.  
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In short, Bayesian methods assume that learners have some prior belief 

distribution across all possible causal structures, and update these beliefs as statistical 

data is gathered. Bayes’ rule is used to compute posterior probabilities for each of the 

possible models given the data, and a best fitting model is derived from this 

computation. Constraint-based methods work by computing the independencies and 

dependencies (both conditional and unconditional) in the data set, and then returning 

the structures that are consistent with these dependencies (for more details see Danks, 

2005, forthcoming).  

At present these computational models have been used as rational rather than 

psychological models of human learning (Anderson, 1990; Marr, 1982). They aim to 

specify what the learner is computing, rather than how they are actually computing it. 

Both Bayesian methods (Steyvers et al., 2003; Tenenbaum & Griffiths, 2003) and 

constraint-based methods (Gopnik et al., 2004) have been used for this purpose. A 

question closer to the concerns of the empirical psychologist, however, is whether 

these models tell us anything about the psychological or process level of causal 

learning. What are the mechanisms that people actually use to learn about causal 

structure? 

In their current state these computational approaches seem to both over-

estimate and under-estimate the capabilities of human learners. For instance, they 

over-estimate the computational resources and processing power available to humans 

in order to make the appropriate Bayesian or constraint-based computations. Bayesian 

models require priors across all possible models, and Bayesian updating with each 

new piece of evidence. Constraint-based models require the computation of all the 

dependencies and independencies in the data, and inference of the set of Markov 
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equivalent structures. Both methods appear to place insurmountable demands on a 

human mind that is known to be limited in its processing capacities.  

There are potential solutions to these shortcomings. Bayesian methods can be 

heuristic rather than exhaustive, and constraint-based methods can use more 

psychologically realistic methods for computing dependencies (Danks, 2005). 

However, both approaches still need to deal with the basic problem, detailed in this 

chapter, that there is very little evidence that people who only observe patterns of 

covariation between events (without further constraints) can induce causal models. In 

particular, there is no clear evidence that people can use statistical information from 

triples of events to infer causal models via conditional dependence relations. And this 

ability seems to lie at the heart of both approaches.  

 In addition, these computational approaches seem to underestimate human 

capabilities (or, more precisely, the richness of the environment around them, and 

their ability to exploit this information). As we have seen throughout this chapter, 

people make use of various cues aside from statistical data. These cues are typically 

used to establish an initial causal model, which is then tested against the incoming 

statistical data.  Bayesian approaches have sought to model this by incorporating prior 

knowledge and assumptions in the learner’s prior belief distribution (Tenenbaum & 

Griffiths, 2003), and thus account for inferences made on very sparse data. But it is 

not clear how they handle cases where people test just a single model, and then 

abandon it in favor of an alternative. This kind of discontinuity in someone’s beliefs 

does not emerge naturally from the Bayesian approach1.  

On the face of it constraint-based methods are largely data-driven, so the use of 

prior knowledge and other assumptions appears problematic. But they too have the 

                                                 
1 This point was made by David Danks (personal communication). 
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resources to address this issue. Along with the constraints that stem from the 

statistical dependencies in the data, they can include constraints imposed by prior 

knowledge, temporal order information, and other cues. This approach also seems to 

fit well with the discontinuous and incremental nature of human learning (Danks, 

2005, forthcoming).  

However, in both cases further work is needed to develop a comprehensive 

framework that can integrate the diverse constraints and cues to structure (e.g., from 

temporal ordering, interventions, etc.), and capture the heuristic methods that humans 

seem to adopt. In particular, this framework needs to be able to combine and trade-off 

these constraints as new information arrives.  For example, although an initial causal 

model might be based on the assumption that temporal order reflects causal order, a 

revised model could reject this constraint in the light of statistical data that contradicts 

it (see Section 4.2).  

7. Summary 

In this chapter we have argued for several interconnected theses. First, the 

fundamental way that people represent causal knowledge is qualitative, in terms of 

causal structure. Second, people use a variety of cues to infer structure aside from 

statistical data (e.g., temporal order, intervention, coherence with prior knowledge). 

Third, once a structural model is hypothesized, subsequent statistical data is used to 

confirm or refute the model, and (possibly) to parameterize it. And the structure of a 

posited model influences how the statistical data itself is processed. Fourth, people are 

limited in the number and complexity of causal models that they can hold in mind to 

test, but they can separately learn and then integrate simple models, and revise models 

by adding and removing single links. Finally, current computational models of 

learning need further development before they can be applied to human learning. 
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What is needed is a heuristic-based model that shares the strengths and weaknesses of 

a human learner, and can take advantage of the rich causal information that the natural 

environment provides.  
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