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The Advantage of Timely Intervention

David A. Lagnado
University College London

Steven Sloman
Brown University

Can people learn causal structure more effectively through intervention rather than observation? Four
studies used a trial-based learning paradigm in which participants obtained probabilistic data about a
causal chain through either observation or intervention and then selected the causal model most likely to
have generated the data. Experiment 1 demonstrated that interveners made more correct model choices
than did observers, and Experiments 2 and 3 ruled out explanations for this advantage in terms of
informational differences between the 2 conditions. Experiment 4 tested the hypothesis that the advantage
was driven by a temporal signal; interveners may exploit the cue that their interventions are the most
likely causes of any subsequent changes. Results supported this temporal cue hypothesis.

Our perspective on the world is inextricably causal. We under-
stand, predict, and control our environment by positing stable
causal mechanisms that generate the transitory flux of our sensory
experience (Hume, 1748; Mill, 1843/1950; Pearl, 2000; Sloman &
Lagnado, 2004). Crucial as such causal knowledge is to our
functioning in the world, the details of how we acquire it are
unclear. Much is learned through education and instruction and by
the use of analogy or boot-strapping from prior causal beliefs.
However, some has to be acquired anew, inferred from the chang-
ing states of the world and our interactions with it.

Observation or Experiment

Philosophers have long distinguished between two ways in
which we learn about causal structure: through observation and
experimentation. Mill (1843/1950), when outlining how one dis-
covers causal relations, stated “We may either find an instance in
nature suited to our purposes or, by an artificial arrangement of
circumstances, make one” (p. 211). More colorfully, in character-
izing the role of experiment, Bacon (1620) spoke of torturing
nature to reveal its secrets, or of “twisting the lion’s tail.” The
critical difference between the two approaches involves the notion
of manipulation. In the paradigm case of observation, one simply
registers or experiences patterns of events. In contrast, in the case
of experimentation, one actively manipulates some feature of the

world and then observes the consequent results. For example,
compare learning to use a new software program by watching a
preprogrammed video clip with learning to use it through inter-
acting with the program itself.
It is a commonplace intuition that experiment, where possible, is

a more effective learning tool than mere observation. Mill (1843/
1950) argued that the main way to establish cause–effect relations
is by the method of difference, which requires us to introduce or
remove a potential cause while keeping other factors constant. He
also claimed that experimentation is necessary to identify a unique
causal structure. For example, suppose that police statistics reveal
that the incidence of drug use and the level of petty crime are
highly correlated. Such observational data will typically be insuf-
ficient to determine whether drug use promotes petty crime or vice
versa. However, if one of these factors is manipulated, that is, by
a police initiative to reduce drug usage, a subsequent drop in the
crime rate tells us that drug usage is driving the crime rate. More
generally, the ability to experiment allows us to discriminate
between causal structures that are indistinguishable through obser-
vation alone.
Mill’s (1843/1950) insights are now implicit in contemporary

experimental design. It is common to distinguish between obser-
vational and experimental studies and to prefer the latter when
possible (Shadish, Cook, & Campbell, 2002). On a grander scale,
the claim has been made that a hallmark of modern science was the
introduction of the experimental method and hence the passage
from uncontrolled observations to controlled experiments (cf.
Hacking, 1983).
However, do similar conclusions apply to our everyday learning

and reasoning? Intuitively the answer is yes: We are continually
conducting informal experiments of our own to learn about the
world around us. We remove items from our diet to see what is
making us unhealthy or overweight, we tinker with new software
programs to see what does what, we experiment with different
ingredients in search of a tasty meal. Furthermore, the claimed
advantage of intervention over observation resonates with the
received wisdom that we learn better if we are able to interact with
and explore our learning environment rather than just observe it.
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The current study aims to answer three questions. Is there an
advantage of intervention over observation in causal structure
learning? If so, what drives this advantage? Finally, what light
does this shed on the cognitive mechanisms that people use to
learn about causal structure?

Previous Research in Causal Learning

Although the distinction between observation and intervention
is marked in theories of causal learning by the contrast between
classical Pavlovian and instrumental conditioning (Mackintosh &
Dickinson, 1979), differences with respect to the ease or manner of
learning have not been thoroughly explored (for recent exceptions
see Gopnik et al., 2004; Sobel, 2003; Steyvers, Tenenbaum,
Wagenmakers, & Blum, 2003). This is because previous research
(see Shanks, in press, for an overview) has tended to presort the
learner’s environment into putative causes and effects and has
focused on people’s estimates of the strength of the causal relation
between them1 (cf. Tenenbaum & Griffiths, 2001).
Such learning situations minimize the disparity between obser-

vation and intervention because there is little difference between
observing that a putative cause is present and intervening to make
it present if you already know a causal relation exists. What
matters in such a case is the degree to which this cause, once
present, produces (or predicts) the effect. However, with more
complex environments, or when variables are not prepackaged as
causes or effects, the difference between observation and interven-
tion may be critical to uncovering the correct causal structure.

Computational Models of Structure Learning

A formal framework for causal inference based on causal Bayes
networks has been recently developed (Pearl, 2000; Spirtes, Gly-
mour, & Schienes, 1993). This approach clarifies the relation
between the probabilistic dependencies present in a set of data and
the causal models that could have generated that data. It explicates
the conditions under which it is possible to move from data to
causal model (and vice versa) and permits the modeling of inter-
ventions on a causal system. We give an informal introduction to
some of these ideas in a section below.
On the basis of this framework, computational methods have

been developed for inferring causal structure from statistical data.
There are two main approaches in the literature here: bottom-up
constraint-based methods (e.g., Spirtes et al., 1993) and top-down
Bayesian methods (e.g., Heckerman, Meek, & Cooper, 1999).
Applied to human causal induction, the bottom-up approach sup-
poses that people encode information about the probabilistic de-
pendencies present in the experienced data and use this informa-
tion to generate Markov equivalent causal models. In contrast,
top-down approaches suppose that people use prior knowledge to
select an initial model (or small set of candidate models) and then
update these as they experience the statistical data.
A psychological version of the top-down approach was ad-

vanced by Waldmann (1996) and was termed the causal model
theory. Waldmann argued that people’s prior knowledge and as-
sumptions not only provide initial causal models but also shape
how the subsequent learning data are interpreted. In support of
these claims, various experiments have shown that abstract knowl-
edge about causality (such as causal directionality) can affect final

causal judgments, even when the learning input is held constant
(Waldmann, 1996, 2001; Waldmann & Hagmayer, 2001).
Most of these experiments have focused on people’s causal

strength estimates rather than looking directly at judgments about
causal structure. A secondary aim of the current research was to
produce empirical data that discriminates between the causal
model and constraint-based approaches to structure learning.

Recent Work on Structure Learning

Steyvers et al. (2003) argued for a top-down Bayesian model of
causal induction. In common with the research aims in this article,
they too examined the contrast between observational and inter-
ventional learning, albeit within a different experimental para-
digm. They used a novel task in which people infer the commu-
nication network between a group of alien mind readers. In an
observation phase, participants see several trials, each depicting a
specific pattern of communications between three aliens. They
then select the network that best explains these data. This obser-
vation phase is followed by an intervention phase, in which par-
ticipants make a single intervention (by implanting a distinctive
word in a selected alien’s head) and view several examples of the
communication patterns that result. Finally, a second choice as to
the correct network is made. Overall, participants improved their
initial model choices once they had seen the results of this single
intervention.
The paradigm adopted by Steyvers et al. (2003) differs from the

standard causal learning paradigm in a variety of ways. In their
set-up, category variables can take on a large number of values
(different possible words) rather than being binary. This facilitates
the detection of correlations and reduces the chances of mistaking
a spurious correlation for a genuine one. They also use a relatively
small number of trials with no corrective feedback. This reduces
the ability of data-driven mechanisms to learn.
The experimental paradigm adopted in the present study is much

closer to the standard causal learning paradigm. We used binary
variables, a larger number of trials, and corrective feedback on
each trial. We also introduced separate observation and interven-
tion conditions with the same number of trials in either condition.
Thus, people in the intervention phase made multiple interven-
tions, which gave them the opportunity to experiment repeatedly.
This design equalizes the number of trials in both the intervention
and observation conditions, whereas in the design of Steyvers et al.
(2003), the observation phase always precedes the intervention
phase; thus, model choices based on observation alone are always
made on less information than choices made after intervention.
Another difference between these task paradigms is that our task
marks out one variable as an outcome (in common with the
standard paradigm), whereas in the mind-reading task, the out-
come variable has no unique status.
We see these different task paradigms as complementary routes

to the analysis of causal inference. They may also tap into different
kinds of learning processes. This issue will be discussed in the
General Discussion section.

1 In such experiments, participants can judge that there is no causal link
between a candidate cause and the effect by giving a causal strength
estimate of zero.
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Three Possible Reasons for the Advantage of Intervention

Learning through experiment might be more effective than
observation for a variety of reasons. We focused on three, as
follows.

Information

The two forms of learning can lead to distinct bodies of infor-
mation. Observational learning involves the sampling of a sys-
tem’s autonomous behavior: One is exposed to patterns of data
(e.g., drug-use rates and crime rates across various time periods or
districts) generated by the system’s underlying causal model. In
contrast, with interventional learning patterns of data are observed
conditional on specific actions on the system (e.g., the police
observe what effect cracking down on drug usage has on the crime
rate). One consequence of this difference is that interveners are
able to modulate what type of data they observe. They can select
the variety of information they see and hence concentrate on
particular subsets of the system’s behavior. For example, in ex-
ploring a software package, an individual can focus exclusively on
a small subset of functions and master these before moving onto
more complex procedures. Note that only in the observational case
is it possible to see a representative sample of the system as it
operates autonomously. We term this a selection-based difference
in information.
Another consequence of intervention is that it can lead to the

modification of the causal model that generates the data. This
occurs whenever the system variable intervened on has other
causal links feeding into it. If the intervention is successful, then
the value of this variable will no longer be affected by these other
causal mechanisms because their effects are being overridden by
the intervention. In effect, a new causal model is created with those
links removed.
To illustrate, consider the causal model depicted in the upper

panel of Figure 1, which shows a simplified model of a battery-
driven torch. There are three binary variables, battery, current
flow, light, each of which can take the values on or off. Under
normal operation turning the battery on causes the current to flow,
and this in turn causes the light to be on.
Suppose that one intervenes on this system by stopping the

current flow (e.g., by breaking the circuit). This can be represented

by setting the current flow variable to off and by removing the
causal link from battery to current flow because battery no longer
has a causal effect on current flow—only the intervention does.
The modified model is shown in the lower panel of Figure 1. It
represents the intuition that if one intervenes to stop the current
flow, one cannot draw any new conclusions about the status of the
battery.2 One can, however, expect the light to go off, because the
causal link from current flow to light remains intact (for full details
see Pearl, 2000; Spirtes, Glymour, & Schienes, 1993).
It is clear that the kind of information that results from such

modifications to a causal system is peculiar to intervention and not
observation. We term this a modification-based difference in in-
formation. For the purpose of learning causal structure, this can
have several advantages. First, as Mill (1843/1950) pointed out, by
performing an experiment, we can discriminate causal structures
that are impossible to distinguish through observation alone. We
have already seen this in the earlier example, in which an inter-
vention on drug usage permitted the inference that a high incidence
of drug usage leads to higher crime rates. The same principle
applies with more complex causal structures. For instance, con-
sider the task of distinguishing between a causal chain model (A3
B3 C) and a common cause model (A4 B3 C). For concrete-
ness, suppose we have two competing models of the relationship
between anxiety, insomnia, and tiredness. According to the chain
model, anxiety causes insomnia, and insomnia causes tiredness
(without any other causal links between these three variables).
According to the common cause model, insomnia is an indepen-
dent cause of both anxiety and tiredness. These two alternative
models are shown in the upper panel of Figure 2.
If you can only observe the data generated by the system (e.g.,

by looking at a database of people visiting a sleep clinic, where for
each patient there is a chart listing levels of anxiety, insomnia, and
tiredness) and have no other clues about causal structure, it is
impossible to determine whether the underlying causal structure is
a chain or a common cause. This is because the two structures
generate data that share the same conditional and unconditional
dependencies. All three variables are unconditionally dependent,
but anxiety and tiredness are independent conditional on insomnia.
That is, the probability of tiredness given insomnia is the same as
the probability of tiredness given insomnia and anxiety. This
corresponds to the fact that in both models insomnia “screens-off”
anxiety from tiredness. If you know that someone has insomnia,
the additional fact that they have anxiety does not alter the prob-
ability that they are tired. In other words, there is no direct causal
link between anxiety and tiredness; any covariation between them
is mediated by insomnia.
Models that share the same conditional and unconditional de-

pendencies are termed Markov equivalent (Pearl, 2000; Spirtes et
al., 1993). An appropriate intervention, however, enables the two
structures to be distinguished. If one gives some of these patients
a drug that promotes good sleep (and is known to have no side-
effects on anxiety level), we are effectively intervening to set the
insomnia variable to off. This is a critical test. If we observe that
the levels of anxiety for these patients tend to drop, we can
conclude that the common cause model is correct; that insomnia

2 The base rate probability of the battery being on is the same as in the
original unmodified model.

Figure 1. Simplified causal model of a battery-driven torch and after an
intervention to break the circuit.
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causes anxiety. If we observe that they still exhibit high levels of
anxiety, we can conclude that the chain is correct; that anxiety
causes insomnia and not vice versa. The two new models created
by the drug intervention are shown in the lower panel of Figure 2.
A related advantage of intervention is that it allows us to isolate

and test specific subsystems and hence enables us to perform
unconfounded experiments. This applies both to standard experi-
mental practices (e.g., the use of randomizing procedures) and to
the informal experiments we conduct in our day-to-day life. By
performing a variety of sporadic actions, we reduce the chances
that their consequences are in fact caused by some external factor
that just happens to covary with these actions.
Two assumptions underlie modification-based learning. First,

interventions are made relative to a specific causal model; thus, for
someone to learn about causal structure through intervention, they
must have a prior set of candidate causal models. These might be
induced on the basis of observational data or through prior knowl-
edge or assumptions about the causal system in question. Second,
in common with observationally based learning, structural infer-
ences can only be made on the assumption that there are no
unobserved common causes (this is known as the sufficiency
assumption). Without this assumption, a specific intervention may
fail to discriminate between candidate causal structures. For ex-
ample, if there is a hidden common cause of anxiety and tiredness
(such as a mysterious virus), an intervention on insomnia will not
break the dependence between these two variables.

Decision Demand

Quite aside from the informational differences between exper-
iment and observation, the tasks also differ in terms of their
demands. In particular, when experimenting, people must decide
what intervention to make, whereas when observing, people are
not obliged to make such a decision. As a consequence, it is
possible that interveners become more engaged in the learning task
and thus outperform observers. This possibility will be discussed
in more detail in the introduction to Experiment 3.

Temporal Cue

Another important difference between intervention and obser-
vation is that in the former, one is customarily supplied with an

implicit temporal cue. This is because our experience of our own
actions precedes our experience of the effects of these actions, and
this maps onto the fact that actions never occur after their effects.
In other words, if you perform an action, you can be reasonably
sure that any subsequent changes are effects rather than causes of
this action (both your action and the subsequent changes may be
common effects of a confounding cause, but this possibility can be
ruled out by repeated actions performed independently of other
variables in the system). Thus, your intervention itself furnishes
you with a temporal cue relevant to uncovering causal structure:
Changes that happen subsequent to your intervention are very
likely to be effects of your action and cannot be causes of it.
However, in the case of observation, if one observes data

simultaneously (e.g., when consulting a chart summarizing the
patient’s levels of anxiety, insomnia, and tiredness) no temporal
cue is available. If the receipt of data does contain temporal delays,
then these can provide some cue to causal structure, but they will
be less stable indicators than in the case of intervention, because
one sometimes receives information about effects before one re-
ceives information about their causes, for example, when symp-
toms are used to diagnose a disease or when the causes of an
airplane crash are inferred from its black box recording. This
temporal priority cue is discussed in more detail in the introduction
to Experiment 4.
In the four studies reported in this article, we aimed to explore

how these various factors—information (selection-based and
modification-based), decision demand, and temporal cues—affect
the difference between interventional and observational learning.
In the first experiment, we established that there is indeed a
difference between people’s causal model selections across the
two types of learning. In the second experiment, we examined
whether this is due to a modification-based difference in informa-
tion. In the third experiment, we looked at both selection-based
differences in information and decision demand, whereas in the
fourth experiment, we focused on the effect of temporal cues.

Experiment 1

The central aim of this experiment was to compare the obser-
vational and interventional learning of a simple causal model. We
used a standard observational learning paradigm (e.g., Shanks,
1995, in press) but adapted it to include an interventional learning
condition and a model selection question. The learning data were
generated from a simple three-variable chain model, and perfor-
mance was assessed both through a model selection question and
a set of conditional probability judgments.
Our reasons for using a causal chain structure were two-fold.

First, although such a structure is relatively simple and pervasive
in many everyday causal environments, it has not been investi-
gated much in standard causal learning experiments (for recent
exceptions, see Ahn & Dennis, 2000; Waldmann & Hagmayer,
2001). Second, it is the simplest structure that can generate qual-
itatively different data according to whether one observes or in-
tervenes. As noted in the introduction, an intervention on the
intermediate variable of a three-variable chain will modify its
causal structure, rendering the intervened-on variable independent
of its usual causes. This contrasts with the observational case in
which the causal system remains unmodified. By using a chain
structure in our experiments, we can explore whether people are

Figure 2. Distinguishing between two alternative causal models by
means of an intervention.
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sensitive to such structural modification and whether they can use
it to guide their learning of causal structure.

Method
Participants and apparatus. Thirty-six undergraduates from Brown

University received course credit for their participation. All participants
were tested individually. The entire experiment was run on a personal
computer.
Materials. The presentation of on-screen information was very similar

in both the observational and interventional tasks. For both tasks, two
different cover stories were used. In the chemist scenario, the two potential
causes were acid level and ester level, and the outcome was the production
of a perfume. In the space engineer scenario, the two potential causes were
temperature level (of the oxidizing agent) and pressure level (in the
combustion chamber), and the outcome was the launch of a rocket. For
illustrative purposes, we discuss examples using just the chemist scenario,
but both scenarios were used throughout all the experiments.
In the learning phase, labels for the two potential causes were presented

side-by-side, each with its own visual icon above and each with two boxes
labeled HIGH and LOW directly underneath. A screen-shot of the learning
phase is shown in Figure 3. On each trial in the observational condition,
these boxes were highlighted in blue to display the appropriate test result.
On each trial in the interventional condition, participants could click on one
of these four boxes to set one variable to either HIGH or LOW. In both
conditions, the label and visual icon for the outcome variable were dis-
played to the right of the cause variables. There were also two boxes
directly underneath (labeled PRESENT and ABSENT in the chemist sce-
nario and LAUNCH and FAIL in the space engineer scenario), one of which
was highlighted in blue depending on the trial outcome.
The learning set in both conditions was constructed on the basis of the

chain model shown in Figure 4. In the observation condition, this resulted
in each participant seeing the same distribution of trials (shown in Table 1)
but with order randomized. In the intervention condition, the make-up of
each trial depended on which intervention was made. The values for the
variable that was not intervened on, and for the outcome variable, were
generated at random according to a suitably modified chain model. For

example, if a participant intervened to set the source variable (e.g., acid) to
high, the intermediate variable (ester) was made high, with a probability
equal to 0.8 and conditional on ester being high the outcome variable
(perfume) was made present with probability equal to 0.8. However, if
someone set the intermediate variable (e.g., ester in the chemist scenario)
to high, the other cause variable (acid) was made high, with a probability
equal to 0.5 (its base rate of occurrence), and the outcome variable was
made present with a probability equal to 0.8.
The test phase was made up of two separate components: a model

selection question and a set of probability judgments. For model selection,
five candidate models were presented on the screen simultaneously (as
shown in Figure 5), with an option box alongside each one. The probability
judgments consisted of 12 questions. Eight of these asked for the condi-
tional probability of the outcome variable (e.g., the probability of the
perfume being produced) given a specified set of values for the two cause
variables (e.g., given that the acid is high, and the ester is low). The other
four questions asked for the probability of one of the cause variables,
conditional on a specified value for the other one (e.g., the probability that
the ester is high, given that the acid is low).
These questions were presented on the screen in a similar fashion to the

learning phase: Visual icons and labels for the two cause variables were
placed side-by-side, each with two boxes underneath indicating the values
for each test question. A particular value was indicated with a blue
highlight, and when the value was unknown, a question mark was placed

Figure 3. Screen-shot of learning phase for space engineer scenario.

Figure 4. Causal graph used to generate stimuli for both observational
and interventional tasks in Experiments 1 and 2.
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over the appropriate pair of boxes. There was a 0–100 rating scale on
which participants could register their probability judgment.
Design. The main factor (interventional vs. observational learning)

was within-subject, with order and scenario (chemist or space engineer)
counterbalanced. The order of the test phase components (model selection
or probability judgments) was also counterbalanced, but the individual
probability judgments were presented in a fixed order.
Procedure. Initial instructions to the participants included an introduc-

tion to the notion of a causal model with examples of the three types of
models (chain, common cause, common effect) that they would be asked to
choose between. Each participant then completed both an observational
and an interventional learning task. Two cover stories were used, one for
each task. Participants were asked to imagine that they were chemists
(space engineers) running tests on a new perfume (rocket) in order to
discover the underlying causal structure. They were told that previous tests
had identified two variables as relevant to the success of the test. In the
chemist scenario the variables were acid level (either high or low) and ester
level (either high or low), and the outcome variable was whether the
perfume was produced. In the space engineer scenario, the relevant vari-
ables were the temperature level of the oxidizing agent (either high or low)
and the pressure level in the combustion chamber (either high or low), and
the outcome variable was whether the rocket launched.
In the observation task, participants viewed the results of 50 test trials.

On each trial they clicked on a button to view the values of the two cause
variables (e.g., acid is high; ester is low) and whether the outcome occurred
(e.g., the perfume is produced). All variable values were displayed simul-
taneously. The learning set was the same for each participant except for the
order of presentation, which was randomized across participants. After
viewing all of the trials, participants proceeded to the test phase.
In the learning phase of the intervention task, participants were able to

set the value of one of the two cause variables. They then viewed the
resulting values for the outcome variable and for the cause variable they
had not intervened on. In contrast to the observation condition, the value
for the intervened-on variable was viewed before the values for the two
other variables. After running 50 tests, participants proceeded to a test
phase identical to that of the observation condition.
There were two components to the test phase: a model selection question

and a set of 12 probability judgments. In the model selection question, the
five candidate models were presented on the screen simultaneously, and
participants were asked to select the model that they believed was most
likely to have produced the data that they had just seen. They registered this
choice by clicking on the appropriate option button. Once a model was
selected, a rating scale from 0–100 appeared with which participants
expressed their confidence that this selection was correct. They could then
select a second model if they wished or exit from the test. This process was
repeated until they were satisfied that no other model was likely to have
produced the data. In the probability judgment phase, the 12 questions were
presented sequentially, and participants used the 0–100 rating scale to
register their judgments.

After completing the first task, participants in the observation condition
switched to an interventional learning task and vice versa. Each participant
thus completed both an observational and interventional task.

Results

Model selection. The results for the model selection task are
shown in Figure 6, with the correct chain model designated as
Chain 2. We summed over the two scenarios because scenario had
no significant effect on participants’ choices. As can be seen from
Figure 6, in both conditions only a minority of participants man-
aged to select the correct chain model. However, the proportion of
participants who chose the correct chain in the intervention con-
dition (12 of 36) was greater than chance, !2(1, N ! 36) ! 4.1,
p " .05, whereas the proportion in the observation condition (5 of
36) did not differ from chance, !2(1, N ! 36) ! 0.84, ns.3
Furthermore, correct chain model selections were significantly
higher in the intervention than in the observation condition,
t(35) ! 2.02, p " .05, one-tailed. There was also a strong bias in
favor of the common effect model in the observation condition
(67%, 24 out of 36), significantly greater than in the intervention
condition (22%, 8 of 36), t(35) ! 4.39, p " .01.
Judgments of conditional independence. On the chain model

used to generate the learning data, acid (A) is independent of
perfume (P) conditional on ester (E); in other words, ester screens-
off acid from perfume. Sensitivity to this relation can be assessed
by seeing whether participants’ probability judgments conform to

3 The chain model used to generate the data is Markov equivalent to the
Common Cause Model 2. However, although not inconsistent with the
observational data, this model requires an idiosyncratic parameterization
whereby one effect (acid) occurs more often than its sole cause (ester).
Only one person chose this model in the observation condition. Moreover,
if this model is counted as a correct choice, the proportion of participants
in the observation condition who select a correct model (6 of 36) is
significantly less than chance, !2(1, N ! 36) ! 8.17, p " .01. This is due
to the strong bias for the common effect model.

Table 1
Frequency of Presented Instances in Observational Learning
Condition in Experiment 1

Acid level Ester level Perfume Frequency

High High Yes 16
High High No 4
High Low Yes 0
High Low No 5
Low High Yes 0
Low High No 0
Low Low Yes 0
Low Low No 25

Figure 5. The five candidate causal models in the selection task.
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the equality P(P!A&E) ! P(P!E). The mean ratings for these two
probabilities are shown in Figure 7. No significant difference was
obtained between the two probabilities in the intervention condi-
tion; mean judged probability for P(P!A&E) was 81.6, for P(P!E)
it was 79.7, t(35) ! 0.78, ns, (1 # " ! 0.987), suggesting that
participants were sensitive to the conditional independence. This is
reinforced by the fact that 21 of 36 (58%) participants judged the
two probabilities equal. This contrasts with the observation con-
dition, in which the mean probabilities differed substantially; mean
judged probability for P(P!A&E) was 86.5, for P(P!E) it was 63.2,
t(35) ! 5.89, p " .0001, and only 8 out of 36 (22%) participants

judged them equal. Comparing the two conditions, a significantly
greater number of participants obeyed screening-off in the inter-
ventional condition, t(35) ! 4.45, p " .001. In short, participants
tended to obey screening-off in the intervention but not in the
observation condition.
Comparing model selections with probability judgments. Did

people who chose the correct chain model also make probability
judgments that conformed to the appropriate screening-off rela-
tion, and did those who chose the common effect model make
judgments in conformity with the relations encoded by that model?
There were no significant differences across observational and
interventional conditions; thus, we report the percentages col-
lapsed across conditions. Of those participants who did choose the
correct chain model, 80% made probability judgments that obeyed
screening-off (e.g., that acid is independent of perfume conditional
on ester). Of those participants who chose the common effect, 82%
made judgments that violated screening-off, and 64% made judg-
ments that implied that the two potential causes (e.g., acid and
ester) were independent. Both of these sets of judgments are
consistent with the common effect model and not the chain model.
Thus, in both observational and interventional conditions, partic-
ipants’ probability judgments tended to map onto their model
selections, whether these were for the correct chain or the incorrect
common effect.
Derived judgments of contingency. A common index for the

degree to which two events are related is given by the statistical
contingency measure ‚P (Allan, 1980). For two events, A and B,
the contingency between A and B is determined by the difference
between the probability of B given A and the probability of B given
not-A. That is, ‚PAB ! P(B!A) # P(B!$A). Note that contingency
is directional; thus, ‚PAB is not necessarily equal to ‚PBA. Al-
though not always an appropriate index of the causal relation
between A and B (e.g., see Cheng, 1997; Pearl, 2000; Shanks, in
press), a high degree of contingency is often suggestive of a causal

Figure 6. Model selection in Experiment 1 for interventional and observational conditions (the correct model
is Chain 2).

Figure 7. Assessment of screening-off: Mean conditional likelihood rat-
ings for the outcome variable in Experiment 1. P ! perfume; A ! acid;
E ! ester.
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relation. In the current experiment, the programmed contingency
between acid and ester (‚PAE) is 0.8, as is the contingency
between ester and perfume (‚PEP). These contingencies provide a
measure of the strength of these individual links. By deriving
estimates of these contingencies from participant’s probability
judgments, we obtained an indirect measure of their sensitivity to
the strength of these relations.
The derived ‚P between two variables A and B is given by:

derived ‚PAB # judged P%B!A& $ judged P%B!$A&.

This was computed for both the contingency between acid and
ester (‚PAE) and that between ester and perfume (‚PEP), corre-
sponding to the two directional links in the chain model. Again,
observational and interventional groups did not differ; thus we
collapsed across them. The most notable finding was that the
judged contingency between ester and perfume, derived ‚PEP !
0.64, was much higher than that between acid and ester, derived
‚PAE ! 0.25, t(70) ! 9.79, p " .0001, although both had
equivalent strength in the learning data (actual ‚P ! 0.8).4 This
underweighting of the contingency between acid and ester fits with
the general failure to identify the causal link from acid to ester.

Discussion

In sum, the learning of causal structure improved with interven-
tion, both with respect to number of correct model selections and
sensitivity to the appropriate conditional independencies. How-
ever, the majority of participants in both conditions still failed to
uncover the correct model and consistently underweighted the link
between putative causes. This is most apparent in the observation
condition, in which most participants selected a common effect
model in which putative causes are independent. This tendency
resonates with research in multiple-cue probability judgment
(Hammond, 1996; Hastie & Dawes, 2001), in which models that
assume the independence of causes fit the human data well. In-
deed, most of the research in that paradigm operates on the
assumption that putative causes are independent.

Experiment 2

What is it that drives the advantage for intervention over obser-
vation? Although the same underlying causal chain was used to
generate the learning data in both the observational and interven-
tional conditions in Experiment 1, participants did not receive the
same information in both conditions. One difference is modifica-
tion-based: intervening on the intermediate variable in a chain
(e.g., ester in the chemist scenario) disconnects it from the source
variable (acid). As a result of this intervention, a participant may
create a trial in which the ester is high, and the perfume is
produced, but the acid is low (indeed such a trial will occur on 40%
of the occasions when an intervener sets ester to high). In contrast,
an observer will never see a trial with this configuration of values;
whenever acid is low, ester will also be low, and the perfume will
not be produced. A second difference is selection-based: Interven-
tions determine the frequencies of the different kinds of trials
experienced. Therefore, interveners can choose a different distri-
bution of trials than the representative set seen by observers. For
instance, interveners can choose to see a predominance of trials in

which a particular variable is high by repeatedly setting that
variable high.
To equalize information across observational and interventional

conditions, we modified the observation condition; thus, partici-
pants observed the results of another participant’s interventions.
Participants in this observation-of-intervention condition were told
the precise nature of the intervention made on each trial (e.g., the
variable intervened-on and the value set). In this way, participants
in both conditions experienced identical learning sets.
If the advantage of intervention is based purely on the distinc-

tive data that it generates, then there should be no difference
between these two conditions. Unlike the contrast between obser-
vation and intervention in Experiment 1, in the current set-up the
statistical data are equivalent in both conditions. From a statistical
viewpoint, the observation-of-intervention condition is equivalent
to the intervention condition. However, if an advantage for inter-
vention persists, then an alternative factor will be implicated.

Method
Participants and apparatus. Twenty-two undergraduates from Brown

University received $7 each for their participation. None had taken part in
Experiment 1. All participants were tested individually, and the entire
experiment was run on a personal computer.
Procedure and materials. The introductory instructions for all partic-

ipants were identical to those in Experiment 1. All participants completed
both an intervention and an observation-of-intervention condition (order
counterbalanced). The intervention condition was identical to that in Ex-
periment 1. In the observation-of-intervention condition participants were
asked to imagine that they were laboratory assistants observing experimen-
tal tests conducted by a research chemist (or space engineer). On each of
50 trials, they clicked on just one button to view the value the chemist
(engineer) had set for a particular variable (e.g., setting the acid level to
high), the value the other variable took (e.g., ester level is low), and
whether the outcome occurred (e.g., whether the perfume is produced).
Thus, on each trial, all three variable values were displayed simultaneously,
just as in the observation condition in Experiment 1.
To ensure that participants in this condition were aware that they were

observing the results of someone else’s interventions, the intervened-on
variables on each trial were clearly highlighted and labeled as interventions
(e.g., the label “The chemist set the acid to this level” appeared above the
acid icon). Similarly, variables that were not intervened-on were also
clearly labeled (e.g., the label “The level of ester observed on this trial”
appeared above the ester icon).
The learning set for each participant was yoked to the data generated by

a previous participant in the intervention condition. Thus, information was
equalized across both interventional and observational conditions. Clearly,
the information that each participant observed varied according to the
pattern of interventions made by the participant who they are yoked to,
although there was not too much variation in overall frequencies of tests
conducted between different interveners. Table 2 shows the mean frequen-
cies of trials that were generated by the interveners and thus viewed in the
observation-of-intervention condition. Otherwise, the method was identical
to that of Experiment 1.

4 In the observation condition, the experienced contingencies for all
participants were exactly equal to the programmed contingencies. In the
intervention condition, these were only approximately equal because par-
ticipants controlled the trial frequencies they experienced. However, the
discrepancies between experienced and programmed contingencies were
very small (e.g., mean experienced ‚PEP ! 0.79; ‚PAE ! 0.81).
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Results

Model selection. The results for the model selection task are
shown in Figure 8, with the correct chain model again designated
as Chain 2.5 Replicating the results of Experiment 1, the propor-
tion of participants who chose the correct chain in the intervention
condition (12 of 22) was significantly greater than chance, !2(1,
N ! 22) ! 6.01, p " .05, whereas the proportion in the
observation-of-intervention condition (4 of 22) was not, !2(1, N !
22) ! 0.56, ns. In correspondence, correct chain model selections
were significantly higher in the intervention than in the
observation-of-intervention condition, t(21) ! 3.46, p " .01.
There was also a strong bias in favor of the common effect model
under observation of intervention (55%; 12 of 22) but not under
intervention (18%; 4 of 22), which was a significant difference,
t(21) ! 3.46, p " .01.
Judgments of conditional independence. Participants’ mean

ratings for the two relevant probabilities are shown in Figure 9. As
in Experiment 1, no significant difference was obtained between
the two probabilities in the intervention condition, suggesting that
participants were sensitive to screening-off. The mean judged
probability for P(P!A&E) was 85.3 and for P(P!E) it was 84.7,
t(21)! 0.20, ns, (1# " ! 0.900). This is reinforced by the finding
that 13 of 22 (59%) participants judged the two probabilities equal.
However, although the two mean probabilities differed in the
observation-of-intervention condition (P[P!A&E] ! 81.7, P[P!E]
! 74.0), this was only marginally significant, t(21) ! 1.81, p !
.08, and 8 of 22 (36%) participants judged them equal. Further, in
a comparison between the two conditions, the number of interven-
ers that obeyed screening-off was not significantly greater than the
number of observers (sign test, n ! 11, p ! .11). This suggests that
the informational content of the data generated by intervention (as
opposed to pure observation) does promote participant’s sensitiv-
ity to the screening-off relation. Thus, the wider variety of trials
and the distinct pattern of data that results from interventions on
the intermediate variable in the chain helps people to establish that
the intermediate variable screens off the other two variables.
However, this does not invariably lead to the selection of the
correct model.
Comparing model selections with probability judgments. Ob-

servational and interventional conditions did not differ significantly,
so we report the percentages collapsed across conditions. In line with
the findings in Experiment 1, of those participants who chose the
correct chain model, 75% made probability judgments that obeyed
screening-off (e.g., that acid is independent of perfume conditional on
ester). However, in contrast with Experiment 1, of those participants
who chose the common effect model, only 50% made judgments that

violated screening-off (in Experiment 1 it had been 82%), and 57%
made judgments that implied that the two potential causes (e.g., acid
and ester) were independent. Thus, in this experiment, those who
chose the correct model made probability judgments consistent with
that selection, but half of those who chose the common effect model
made probability judgments that were consistent with the chain model
and not the common effect model.
Derived judgments of contingency. As in Experiment 1, no

significant difference was obtained between observational and
interventional groups; thus, we collapsed across them. Once again,
the most notable finding was that the judged contingency between
the ester and perfume variables, derived ‚PEP ! 0.71, was much
higher than that between acid and ester, derived ‚PAE ! 0.32,
t(44) ! 6.90, p " .0001, even though both had equivalent strength
in the learning data (actual ‚P ! 0.8).

Discussion

With respect to the model selection task, the results from this
experiment closely parallel those of Experiment 1. There is a marked
improvement in the intervention condition compared with the
observation-of-intervention condition, which cannot be explained in
terms of interveners receiving better information because the distri-
butional content of the learning data was equated across conditions.
However, with respect to sensitivity to the screening-off relation,
interveners were not significantly better than observers.
Compared with Experiment 1, the intervention condition produced

the same proportion of people obeying screening-off (58% as com-
pared with 59%), but in the new observation (of intervention) condi-
tion there were 36% as opposed to 24% in the pure observation
condition. In short, observers of intervention in this experiment were
more sensitive to screening-off than the pure observers in Experiment
1, even though they were no better at selecting the correct model.
Indeed, in this experiment 50% of the observers who obeyed
screening-off selected the common effect model, for which the
screening-off relation should not hold. This suggests a partial disso-
ciation between whether people select the correct model and whether
their judgments are sensitive to screening-off. The modification-based
information afforded by intervention (or observation of intervention)
serves to improve sensitivity to screening-off without guaranteeing
the selection of the correct model. Finally, in accordance with the
results in Experiment 1, in both conditions people’s derived contin-
gency judgments suggested an underweighting of the link between
putative causes.

Experiment 3

Although the results of Experiment 2 suggest that neither
modification-based nor selection-based information alone is driv-
ing the advantage of intervention, the selection-based account
could be adjusted to accommodate our findings. By having ob-
servers watch another person’s interventions, we denied them the
chance to conduct their own brand of hypothesis testing. In effect
they were viewing someone else’s selections, and this may be very
different from being able to make their own.

5 Because both conditions involved interventions on the chain model,
there was only one uniquely correct model.

Table 2
Mean Frequencies (Across All Participants) of Trial Types
Generated by Interveners in Experiment 2

Intervention
Mean

frequency
Acid

level ! high
Ester

level ! high
Perfume !
present

Set acid high 14.5 14.5 11.4 9.2
Set acid low 11.1 0 0 0
Set ester high 15.5 7.5 15.5 12.5
Set ester low 8.9 4.5 0 0
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Relatedly, because the observers in Experiments 1 and 2 did not
have to make any selections themselves, they did not need to
engage in any decision making. In contrast, interveners had to
choose what intervention to make on each trial. In the introduction,
we termed this a decision demand and suggested that it might
increase focus on the task and thus enhance learning.
To investigate these possibilities we introduced two new con-

ditions—selected observation and forced intervention. In selected
observation, participants had to actively select a particular value
for one of the variables (e.g., to choose to look at a trial on which
acid is set high) prior to viewing the values that the other variables
take on that trial. This parallels the task confronting people in the
intervention condition, insofar as it requires the active selection of
one of the variable values and is thus likely to recruit similar
decision or hypothesis testing processes. It differs, however, in that

people are still just observing variable values rather than setting
them. Thus, selecting a value for the intermediate variable in a
chain (e.g., choosing to view a trial on which ester was low) does
not involve modification of the causal model (e.g., severing the
link from acid to ester).
In the forced intervention condition, the selection requirement is

removed from the intervention task. In this condition, people are
simply told which intervention to make; thus, the need to decide
what intervention to make is removed along with the opportunity
to pursue a specific hypothesis-testing strategy.
We compared these two conditions with the two original obser-

vation and intervention conditions from Experiment 1. The former
was termed forced observation, because it did not involve selection
requirements; the latter was termed selected intervention, because
it did not involve selecting an intervention on each trial. All four
conditions are shown in Figure 10.
If the advantage of intervention is due to the freedom (or require-

ment) to make selections, then one would expect selected observation
to improve performance relative to forced observation, and forced
intervention to reduce performance relative to selected intervention.

Figure 8. Model selection in Experiment 2 for interventional and yoked observational conditions (the correct
model is Chain 2).

Figure 9. Assessment of screening-off: Mean conditional likelihood ratings
for the outcome variable in Experiment 2. P! perfume; A! acid; E! ester.

Figure 10. The four conditions in Experiment 3 resulting from crossing
type of learning (observation vs. intervention) with ability to make selec-
tions (forced vs. selected).
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In addition, in this experiment we modified the parameters of the
chain model; thus, the learning data it generated were fully probabi-
listic. In the first two experiments, the model was semideterministic
such that a cause could occur without its effect (e.g., P[P!E]" 1) but
an effect could not occur without its cause (e.g., P[P!$E] ! 0). One
feature of such a semideterministic chain model is that it cannot be
learned by constraint-based algorithms (e.g., TETRAD; see Spirtes et
al., 1993) that infer graph structure from the determination of pairwise
unconditional and conditional dependencies. This is because such an
algorithm needs to compute all the relevant conditional independen-
cies in the generated data, but some of these will be undefined when
the learning set is semideterministic. More specifically, to induce the
causal chain used in Experiments 1 and 2, an algorithm such as
TETRAD needs to establish that low acid is independent of perfume
conditional on high ester: P(P!$A&E) ! P(P!E). However, no in-
stances of low acid and high ester appear in the learning set, so the
conditional P(P!$A&E) is undefined. If people also use constraint-
based methods, as has been suggested by Glymour (2001) and Gopnik
et al. (2004), then we have an explanation for their poor performance
in the observation condition. They fail to induce the correct causal
structure because they are unable to compute all the relevant condi-
tional independencies. A simple test of this claim is to make the
learning set fully probabilistic; thus, all the relevant conditional inde-
pendencies are computable. On such a learning set TETRAD readily
infers the correct chain structure. The empirical question is whether
humans can too.
Finally, in order to give participants more flexibility in the causal

models they could select, we used a new response method. Rather
than choosing between five complete models, we allowed participants
to build up the complete model by selecting individual causal links.

Method
Participants and apparatus. Forty-eight undergraduates from Brown

University received $7 for their participation. None had taken part in
previous experiments. All participants were tested individually, and the
entire experiment was run on a personal computer.
Procedure and materials. The experiment had a mixed design, with

type of learning (observation vs. intervention) as a between-subjects factor,
and ability to make selections (forced vs. selected) as a within-subject
factor. All participants received the same introductory instructions and
cover stories (chemist and space engineer scenarios) as in previous exper-
iments. Half of the participants then proceeded to a two-task observation
condition, which consisted of both a forced observation task and a selected
observation task (task order and cover story counterbalanced). The forced
observation task was the same as the observational task in Experiment 1,
in which participants were shown the values for all three variables simul-
taneously. The learning phase consisted of 50 trials, constructed according
to a fully probabilistic version of the chain model from Experiments 1 and
2 (see Figure 11). The learning set was the same for each participant
(shown in Table 3) but with order randomized.
In the selected observation condition, participants were asked to imagine

that they were researchers consulting previous test reports that had been
filed by the company secretary. On each trial they chose which kind of test
report to look at by clicking on one of four options: “Look at a test with
high acid level,” “Look at a test with low acid level,” “Look at a test with
high ester level,” and “Look at a test with low ester level.” Having made
their choice, they then clicked on another button marked “Check the other
results in this test report” to see the values for the other two variables.
These latter values were determined from a precompiled list of observation
trials generated by the probabilistic chain model in Figure 11. Thus,
participants in the selected observation condition experienced the same

conditional probabilities as those in the forced observation condition. Appro-
priate labels were used throughout to remind participants that they were
looking at the results of past test reports (minimizing the possibility that they
misinterpret their selections as interventions). For example, below the icon for
the ester variable was the label “The level of ester in this test report.”
The other half of the participants completed a two-task intervention

condition. One of these tasks—selected intervention—was the same as the
intervention condition in Experiments 1 and 2. On each trial, participants
selected a particular intervention and then viewed the values taken by the
other two variables. The same fully probabilistic chain model was used, but
values were computed according to the interventional calculus (e.g., inter-
vening to set ester high did not affect the probability that acid was high,
which remained at 50%). In the forced intervention task, participants were
told that they were laboratory assistants carrying out the instructions of a
superior. On each trial they received an instruction to set one of the
potential cause variables to a particular value (e.g., on this trial set ester to
low) and then viewed the values for the other two variables. The pattern of
data they experienced (both which intervention they were instructed to
make and the values taken by the other variables) was determined by the
pattern of data generated by the previous participant in the selected inter-
vention condition. Thus, the forced interveners were yoked with the inter-
veners who could select their own interventions.
Each learning phase, regardless of condition, was followed by a similar

test phase. This consisted of a set of conditional probability judgments (as
in Experiments 1 and 2) plus a new causal model selection task. In the
latter, participants were presented with a diagram with the three variables
connected by faint arrows (see Figure 12) and had to select or deselect each
individual causal link. Thus, for each link from X to Y, they were asked to
click yes or no according to whether they believed that X causes Y. If they
clicked yes, the arrow from X to Y was highlighted; if they clicked no, it
disappeared.

Results

Model selection. The new response mode allowed a choice of
16 possible models; thus, random responding would lead to a
choice expectation for each model of 0.0625. There was a wide
range of models constructed in each of the four conditions, and
only a minority of participants generated the correct chain model.
Table 4 shows the proportions for the five most common models
(these make up over 65% of the total choices). We conducted
separate chi-square tests on each condition to see whether the
frequency of correct chain models differed from chance. In the two
conditions in which participants were free to make selections—
selected intervention and selected observation—the proportion of
correct chain models were the same (17%), and both were signif-
icantly greater than chance, !2(1, N ! 24) ! 4.44, p " .05. In
contrast, in the forced observation condition (0%) and the forced
intervention condition (13%), neither proportion differed from
chance (for both conditions: !2[1, N ! 24] ! 1.60, ns).
This difference between selected and forced conditions can also

Figure 11. Causal graph used to generate stimuli in Experiment 3.
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be seen in the percentages choosing the correct chain model:
significantly more in selected observation (17%) than in forced
observation (0%), t(23) ! 2.15, p " .05. However, there was no
corresponding difference between selected intervention (17%) and
forced intervention (13%), t(23) ! 1.00, ns.
Comparing the between-subjects conditions, there was a signif-

icant difference between forced intervention and forced observa-
tion, t(46) ! 1.81, p " .05, one-tailed, but no difference between
selected observation and selected intervention, t(46) ! 0.00, ns.
The difference between selected and forced observation is the

same if we include the Markov equivalent common cause model in
our analysis. Recall that although the learning data were generated
by a chain, this structure is Markov equivalent to the common
cause; thus, it could also be counted as a correct choice. If we do
count it as a correct choice, the proportion of participants who
chose a correct model (chain or Markov equivalent common
cause) in the selected observation condition (34%) was again
greater than chance, !2(1, N ! 24) ! 9.52, p " .01, whereas the
proportion in the forced observation condition (4%) was not, !2(1,
N ! 24) ! 1.52, ns. Likewise, when comparing between condi-
tions, there were significantly more correct choices in selected
observation than in forced observation, t(23) ! 3.08, p " .01.
Finally, the main choices made in the forced observation con-

dition were either a single link model (38%) or the common effect
(17%). Both of these were chosen significantly more often than in
the selected observation condition: for the single link model,
t(23) ! 2.16, p " .05; for the common effect, t(23) ! 1.81, p "
.05, one-tailed.
Judgments of conditional independence. Recall that the cor-

rect chain model implies that ester screens-off acid from perfume,
and thus P(P!A&E) ! P(P!E). The mean ratings for these two
probabilities in each of the four conditions are shown in Figure 13.

We conducted a mixed analysis of variance (ANOVA) with prob-
ability judgment (P[P!A&E] vs. P[P!E]) and ability to select (yes
vs. no) as within-subject factors and type of learning (observation
vs. intervention) as a between-subjects factor. There was a main
effect of probability judgment, F(1, 46) ! 45.48, p " .001, but no
effect of ability to select, F(1, 46) ! 0.03, ns, nor type of learning,
F(1, 46) ! 0.65, ns, and no interactions. Thus, in line with the low
performance on the model construction task, the mean probability
judgments for participants in all four conditions violated
screening-off.
A different pattern emerges, however, if we separate out the

probability judgments of those participants who gave a correct
model (either the chain or the Markov equivalent common cause).
These data are displayed in Figure 14 for observers and interven-
ers. We grouped forced and selected conditions together because
there were too few correct responses in forced observation to make
meaningful comparisons across these two conditions. Using these
probability judgments, we conducted a mixed ANOVA with prob-
ability judgment (P[P!A&E] vs. P[P!E]) as a within-subject factor
and type of learning (observation vs. intervention) as a between-
subjects factor. There was no main effect of probability judgment,
F(1, 14)! 0.015, ns (1# " ! 0.753), nor of type of learning, F(1,
14)! 0.931, ns, and no interaction. This shows that the probability
judgments for those participants who generated a correct model
did obey screening-off, and that this held irrespective of whether
they were intervening or observing. This is further confirmed by
looking at individual responses: of those participants who chose
the correct model, eight of nine observers (89%), and five of seven
interveners (71%) obeyed the screening-off relation.
Derived judgments of contingency. As in Experiments 1 and 2,

no significant difference was obtained between groups; thus, we
collapsed across them. Once again, the most notable finding was
that the judged contingency between the ester and perfume vari-
ables, derived ‚PEP ! 0.49, was significantly higher than that
between acid and ester, derived ‚PAE ! 0.27, t(94) ! 6.33, p "
.0001, even though both had equivalent strength in the learning
data (actual ‚P ! 0.6).

Discussion

The overall performance with a fully probabilistic environment
was markedly lower than with the semiprobabilistic environment
in Experiments 1 and 2. The additional noise made the task more
difficult and did not, contra the prediction of a constraint-based

Table 3
Frequency of Presented Instances in Observational Learning
Condition in Experiment 3

Acid level Ester level Perfume Frequency

High High Yes 16
High High No 4
High Low Yes 1
High Low No 4
Low High Yes 4
Low High No 1
Low Low Yes 4
Low Low No 16

Table 4
Proportion of Models Chosen in Each Condition in Experiment 3

Condition

a 3 e
,
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,
p
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,
p
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n ,
p

a e
,
p

Correct
chain

Common
Cause 2 Hybrid

Common
effect

Single
link

Forced observation 0.00 0.04 0.13 0.17 0.38
Selected observation 0.17 0.17 0.04 0.04 0.17
Selected intervention 0.17 0.17 0.04 0.17 0.13
Forced intervention 0.13 0.08 0.17 0.21 0.08

Note. a ! acid; e ! ester; p ! perfume.

Figure 12. Causal model selection task for chemist scenario in Experi-
ment 3.
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method such as TETRAD, enable people to compute the full set of
conditional independencies or improve their model selections. The
main reason for the increase in difficulty was the introduction of
spontaneity —on each trial there was a 20% chance of a variable
being high even though its immediate cause was low (e.g., when
ester was low, perfume was produced with a 20% probability).
This made it harder to establish that acid and perfume were
independent given ester, because on some trials perfume would be
produced when acid was high but ester was low. Such an arrange-
ment was impossible in the semiprobabilistic environment in Ex-
periments 1 and 2. Further, the potential benefits of interventional
information were reduced because on some occasions an interven-
tion to set ester low would result in perfume being produced and
acid (coincidently) being high. Again, this was impossible in the
previous experiments.
Despite the increase in task difficulty and the correspondent

drop in performance, certain conclusions can be drawn from the

data. With respect to correct model selections, selected observa-
tion, selected intervention, and forced intervention conditions did
not differ, but in all three, learning was easier than in the forced
observation condition. At first sight, the marked improvement for
observers who were able to make their own selections compared
with those who could not suggests an advantage due to either
selection-based information or a decision demand. However, the
fact that participants in the forced intervention condition per-
formed no worse than in the selected intervention condition un-
dermines both of these possibilities. If a selection-based difference
or a decision demand was driving the advantage, then one would
expect interveners who were not required to make any selections
or decisions to perform worse than those who were.
One factor that does differentiate between selected observation,

selected intervention, and forced intervention on the one hand and
forced observation on the other, is the existence of a temporal
delay for receipt of information in the former conditions. Thus,
when participants have to make a selection or intervention them-
selves, or watch an intervention being made, they will know the
value of the selected or intervened-on variable before the values of
the other variables. As mentioned in the introduction, this can
provide an important cue to the underlying causal structure, be-
cause interveners can assume that any subsequent changes are
effects, not causes, of the intervened-on variable.
This would explain the advantage of both intervention condi-

tions over the forced observation condition and also the finding
that, relative to participants in the forced observation condition,
those in selected observation were more likely to choose the
correct chain or its Markov equivalent common cause (Model 5).
Selecting the intermediate variable (e.g., ester) does not disconnect
acid from ester; thus, the two variables are still highly correlated.
If participants are using temporal delay as a cue to causal structure,
they are likely to take this covariation as evidence in support of a
causal link from ester to acid. This seems to be reflected in the
results, in particular the finding that participants in selected obser-
vation endorsed the chain and common cause equally often and
endorsed both more often than those in forced observation.

Figure 13. Assessment of screening-off: Mean conditional probability judgments for each condition in
Experiment 3. P ! perfume; A ! acid; E ! ester.

Figure 14. Assessment of screening-off: Mean conditional probability
judgments for interveners and observers who chose correct model in
Experiment 3. P ! perfume; A ! acid; E ! ester.
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Furthermore an explanation in terms of the temporal cue hy-
pothesis would help explain why people find the task so difficult,
even in the intervention condition. In our experimental set-up, an
intervention on the intermediate variable in a chain (e.g., ester)
disconnects the link from acid to ester, and the value of acid is
determined by its base rate probability. Because this base rate is
50%, establishing that, on trials on which ester is intervened-on,
the acid level is independent of both ester and perfume, is hardly
trivial, especially if participants are also focusing on the relation
between ester and perfume. Thus, there is a relatively high risk that
people mistakenly endorse a link from ester to acid on the basis of
a few trials in which the two variables appear to covary. In set-ups
with no spontaneous base rate (see general discussion for exam-
ples), people are unlikely to be misled in this way.
Finally, as in Experiments 1 and 2, intercue links were under-

weighted, both in terms of direct endorsement of causal links and
a derived measure of contingency. This suggests that another
contributor to poor task performance (across all three experiments)
might be a prior tendency for people to treat putative causes as
independent.
In sum, the temporal cue hypothesis is the only account that can

explain the data from all of the experiments conducted thus far.
Our final experiment was focused on this hypothesis.

Experiment 4

The temporal order of experienced events is often a reliable cue
for causal structure because effects never precede causes. This
suggests a useful heuristic: Use experiential order as a proxy for
real-world order. That is, if you perceive or produce an event, infer
that any subsequent correlated changes are effects of that cause (or
effects of an earlier common cause). Such a temporal cue is
especially useful in intervention because our actions precede their
effects (both in experience and in the world). It can also be used in
observation, although it will not be as reliable an indicator because
sometimes we receive information about causes after we receive
information about effects (especially when making diagnoses).
One critical difference between the observation and intervention

conditions in Experiment 1 and 2 was the presence of a temporal
priority cue in the latter but not the former. An intervener first
selected an intervention (by clicking on a button), and then viewed
the values taken by the other variables (by clicking on another
button). This contrasts with the observational case, in which all
values were displayed simultaneously. Interveners could exploit
this cue by assuming that any changes in the values of variables
following an intervention were effects of it. By using this temporal
cue, which is built into the nature of an intervention, they could
more readily identify the effects of a potential cause. This contrasts
with the observation condition in which no temporal cues to
distinguish causes from effects were presented.
We also explained the results of Experiment 3 in terms of this

temporal cue hypothesis. Only the forced observation condition
lacked a temporal cue, and in this condition participants performed
worst. The other three conditions all involved some temporal delay
between displays of information, and model construction perfor-
mance across them was comparable and better than the forced
observation condition.
The hypothesis to be explored in this experiment is that the

advantage of intervention over observation is driven by the pres-

ence of a temporal cue in the former. To test this, we created four
new conditions by crossing the type of learning (observation vs.
intervention) with temporal delay (consistent vs. inconsistent).
Thus, in time-consistent observation, participants received infor-
mation about variable values in a temporal order consistent with
the causal chain model. In particular, there was a temporal delay
between the two putative causes (e.g., acid and ester). In contrast,
participants in time-inconsistent observation received information
about the two putative causes simultaneously. This is inconsistent
with a chain but consistent with a common effect model. Similarly,
in time-consistent intervention, after participants have made their
intervention, they receive information about the variable values in
a temporal order consistent with the chain model; in time-
inconsistent intervention, this order was instead consistent with a
common effect model.6
The four conditions are shown in Figure 15. The critical contrast

here is that in the time-consistent conditions there is a temporal
delay between putative causes, whereas in the time-inconsistent
condition there is no delay. The temporal cue hypothesis predicts
an advantage for time-consistent conditions but no general advan-
tage for intervention over observation.

Method
Participants and apparatus. Twenty undergraduates from University

College London received $7 each for their participation. None had taken
part in any of the previous experiments. All participants were tested
individually, and the entire experiment was run on a personal computer.
Procedure and materials. The experiment had a mixed design, with

type of learning (observation vs. intervention) as a between-subjects factor,
and temporal delay (consistent vs. inconsistent) as a within-subject factor.
All participants received the same introductory instructions and cover
stories (a chemist and a space engineer scenario) as in previous experi-
ments. In addition, they were warned that they would experience slight
temporal delays in the receipt of variable values.
Participants in the observation group carried out both a time-consistent

and a time-inconsistent observation task (task order counterbalanced). In
both tasks, observers were exposed to the same set of probabilistic learning
data used in Experiment 3 (see Figure 11 and Table 3) with order random-
ized. In the time-consistent condition, the order of display of these data was
consistent with the causal chain structure. That is, a short temporal delay (1
s) obtained between the receipt of each variable value. For example, in the
chemical scenario, the value for acid was displayed first, followed by a 1-s
delay, then the value for ester, and then another 1-s delay before the display
of the outcome (perfume present or absent). In the time-inconsistent
condition, the order of display of information was inconsistent with the
causal chain structure but consistent with a common effect model. That is,
the values for acid and ester were displayed simultaneously, followed by a
1-s delay before the display of the outcome.
Participants in the intervention group also carried out both a time-

consistent and a time-inconsistent task. In both tasks, interveners were able
to make interventions on the same causal chain model used in Experiment
3. However, whereas in previous intervention conditions participants
viewed the result of an intervention on a button click immediately after
they had made that intervention, in these intervention conditions they had
their intervention, and the values of the other variables, displayed with 1-s

6 There are a variety of patterns of temporal delays that could have been
used, each consistent with a different kind of causal model. Future research
is planned to explore these alternatives, but for the purposes of this article,
a pattern of delays consistent with a common effect is sufficient to make
the necessary contrast with the chain model.
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temporal delays. Thus, once the interveners had made their intervention,
they viewed the variable values in the same fashion as the observers. In the
time-consistent condition, the order was consistent with the causal chain
structure, with a 1-s delay between each variable in the chain. In the
time-inconsistent condition it was inconsistent, with two of the variables
(including the intervened-on variable) being displayed simultaneously,
followed by a 1-s delay before the display of the outcome.
The test phase for both groups of participants was identical to Experi-

ment 3. Participants answered a set of conditional probability questions and
registered their choice of causal model by clicking on individual links (see
Figure 12).

Results

Model selection. As in Experiment 3, a wide range of models
were selected in each of the four conditions (the chance choice
probability of each model is 0.0625). Table 5 shows the propor-
tions for the seven most common models (these make up over 75%
of the total choices). We conducted separate chi-square tests on
each condition to see whether the frequency of correct chain
models differed from chance. In the two time-consistent condi-
tions, the proportions of participants who constructed the correct
chain were significantly greater than chance: time-consistent in-
tervention condition (40%), !2(1, N ! 10) ! 45.60, p " .001;
time-consistent observation condition (50%), !2(1, N ! 10) !
65.33, p " .001. In contrast, in the time-inconsistent conditions,
neither proportion differed from chance: time-inconsistent inter-

vention condition (10%), !2(1, N ! 10) ! 0.56, ns; time-
inconsistent observation condition (0%), !2(1, N ! 10)! 1.33, ns.
As in the previous experiment, we carried out the same analyses

for the observation conditions with the Markov equivalent com-
mon cause included as a correct response. Here again the propor-
tion of correct choices was greater than chance for time-consistent
observation (60%), !2(1, N ! 10) ! 90.25, p " .001, but not for
time-inconsistent observation condition (10%), !2(1, N ! 10) !
0.25, ns.
In line with the temporal cue hypothesis, significantly more

participants selected the chain model in the consistent conditions
(45%) than in the inconsistent ones (5%), t(19) ! 3.56, p " .01.
This advantage for the temporally consistent condition was also
demonstrated by the differences between time-consistent observa-
tion (50%) and time-inconsistent observation (0%), t(9) ! 3.00,
p " .05, and between time-consistent intervention (40%) and
time-inconsistent intervention (10%), t(9) ! 1.96, p " .05, one-
tailed. In further support of the claim that temporal cues help drive
the intervention versus observation advantage, time-consistent ob-
servation and intervention did not differ, t(18) ! 0.43, ns, nor did
time-inconsistent observation and intervention, t(18) ! 1.00, ns.
In contrast to Experiment 3, in both temporally consistent con-

ditions, the modal choice was the correct chain. In the inconsistent
observation, the modal choice was the common effect model
(30%) and the second most common choice was the single link
model (20%). These are comparable with the choice proportions in
the observation conditions in Experiments 1–3 that lacked tempo-
ral cues. In the inconsistent intervention condition, choices were
spread through a variety of models, with a tendency to endorse
models with too many links.
Judgments of conditional independence. The correct chain

model implies that ester screens-off acid from perfume and thus
P(P!A&E) ! P(P!E). The mean ratings for these two probabilities
in each of the four conditions are shown in Figure 16. We con-
ducted a mixed ANOVA with probability judgment (P[P!A&E] vs.
P[P!E]) and temporal consistency (yes vs. no) as within-subject
factors and type of learning (observation vs. intervention) as a
between-subjects factor. The probability being judged had a main
effect, F(1, 18) ! 47.06, p " .001, but temporal consistency, F(1,
18) ! 1.69, ns, type of learning, F(1, 18) ! 2.52, ns, and the
interactions did not. This parallels the results from Experiment 3
and shows that overall participants’ probability judgments were
insensitive to screening-off.

Table 5
Proportion of Models Chosen in Each Condition in Experiment 4

Condition
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Correct
chain

Common
Cause 2 Hybrid 1

Common
effect

Single
link Hybrid 2 All

Observation time-consistent 0.5 0.1 0.0 0.0 0.1 0.0 0.1
Observation time-inconsistent 0.0 0.1 0.0 0.3 0.2 0.0 0.1
Intervention time-consistent 0.4 0.1 0.1 0.0 0.1 0.0 0.2
Intervention time-inconsistent 0.1 0.1 0.2 0.0 0.0 0.2 0.1

Note. a ! acid; e ! ester; p ! perfume.

Figure 15. The four conditions in Experiment 4 resulting from crossing
type of learning (observation vs. intervention) with temporal delay (con-
sistent vs. inconsistent).
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As in Experiment 3, we separated out the probability judgments
of those participants who gave a correct model. These data are
displayed in Figure 17. Once again, we grouped time-consistent
and time-inconsistent conditions together because there were too
few correct responses in the time-inconsistent conditions to make
meaningful comparisons across these two conditions. Using these
probability judgments, we conducted a mixed ANOVA with prob-
ability judgment (P[P!A&E] vs. P[P!E]) as a within-subject factor
and type of learning (observation vs. intervention) as a between-
subjects factor. In contrast to Experiment 3, there was a main
effect of probability judgment, F(1, 10) ! 27.24, p " .001, a
marginally significant effect of type of learning, F(1, 10) ! 4.8,
p ! .053, and a significant interaction between judgment and type
of learning, F(1, 10) ! 5.13, p " .05.
This analysis shows that observers who constructed a correct

model (six out of seven were in the time-consistent condition)
failed to obey screening-off. This is confirmed by the fact that their
mean judgments for P(P!A&E) was significantly greater than for
P(P!E), t(6) ! 8.44, p " .001. In contrast, for interveners, there
was no significant difference between the two sets of judgments,
t(4) ! 1.44, ns, (1 # " ! 0.286). These findings are reinforced in
the individual data, in which none of the six observers who chose
a correct model obeyed screening-off, whereas three of the five
interveners did. The small sample size, however, gives only weak
support to a conclusion of no difference. None of our general
conclusions hinge on this particular result.
This discrepancy between observers’ model construction and

their conformity to screening-off contrasts with the findings in
Experiments 1 and 3. It suggests that the presence of consistent
temporal delays can promote structure learning even when people
are ignorant of the appropriate probabilistic relations. This will be
discussed in the next section.
Derived judgments of contingency. As in Experiments 1–3,

there was no significant difference between groups; thus, we
collapsed across them. Once again the main finding was that the
judged contingency between the ester and perfume variables, de-
rived ‚PEP ! 0.42, was higher than that between acid and ester,
derived ‚PAE ! 0.32, t(39) ! 1.87, p " .05, one-tailed. However,
this difference was far less than in any of the previous experiments.

Discussion

The main finding was that participants made significantly more
correct choices in those conditions in which the temporal display
of information was consistent with the causal chain than in those
in which it was inconsistent. This supports the hypothesis that the
presence of a temporal cue considerably improves the learning of
causal structure. Moreover, the lack of overall difference between
interveners and observers suggests that the advantage of interven-
tion is largely driven by these temporal cues.
A secondary finding was that none of the observers who se-

lected the correct model gave probability judgments that obeyed
the screening-off relations encoded by this model. This contrasts
with the close fit between model choice and screening-off for the
interveners in the previous experiments, but echoes the partial
dissociation between the two noted in Experiment 2 for observers
of intervention.
One explanation for this finding is that the temporal cue in the

time-consistent observation condition was sufficiently strong;
thus, observers could use it to determine the causal structure
without recourse to any computations based on probabilistic de-
pendencies. Observers simply assumed that the order of display of
information matched the actual causal order and paid less attention
to the conditional frequencies of the various events. In contrast, the
interveners, because they still had to make interventions on each
trial, were more sensitive to these conditional frequencies.

General Discussion

Summary of Results

The first experiment demonstrated an advantage of intervention
over observation for the learning of causal structure, both with
respect to correct model choices and probability judgments that
obeyed screening-off. Subsequent experiments aimed to identify
the factors that drove this advantage. Experiment 2 showed that it
was not solely due to differences in the distributional information
that people were exposed to by finding an advantage for interven-

Figure 17. Assessment of screening-off: Mean conditional probability
judgments for interveners and observers who chose the correct model in
Experiment 4. P ! perfume; A ! acid; E ! ester.

Figure 16. Assessment of screening-off: Mean conditional probability
judgments for each condition in Experiment 4.
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ers while equating the learning distributions. Experiment 3 ruled
out two further explanations for the advantage of intervention: one
based on interveners being free to make their own selections and
thus engage in hypothesis testing, the other based on an increased
focus due to the need to decide what intervention to make. Al-
though observers who were able to select their own information
did perform better than those who could not, interveners who were
forced to carry out prespecified interventions (and thus made no
selections or decisions) performed no worse than normal
interveners.
The temporal cue hypothesis can account for the model choice

data for all these experiments. This is because whenever an inter-
vener makes an intervention (whether freely chosen or prespeci-
fied), they experience the putative cause before any of its possible
effects. This temporal order can be used as a cue to causal
structure. In short, participants could exploit this cue by assuming
that any changes in the values of variables following an interven-
tion were effects of it.
A similar argument holds when people are able to select their

own observations. Their initial selection precedes their experience
of subsequent events, and their inferences about causal structure
can be guided (and misguided) by this temporal cue. In the normal
observation condition, in which all information about a trial is
presented simultaneously, no temporal cues exist, and performance
is correspondingly poor.
This hypothesis was directly tested in Experiment 4, and the

results suggest that the advantage of intervention is driven by the
temporal cue. When information is displayed with temporal delays
that mirror the correct causal structure, learning was enhanced. In
contrast, when it was displayed with delays that were inconsistent
with this structure, learning was impeded. Moreover, this differ-
ence held irrespective of whether people intervened or observed.
A second finding in Experiment 4 was that none of those

observers who constructed the correct model gave probability
judgments that obeyed screening-off. This showed that the veridi-
cal temporal delays were sufficient for people to learn causal
structure even when their probability judgments did not fit the
correct model.

Temporal Cue Heuristic

As we noted in the introduction, interventions differ from ob-
servations because they can modify the causal system under in-
vestigation by overriding causal links that feed into the
intervened-on variable. Our studies suggest that when learning
causal structure, people do not represent this situation explicitly
but use a heuristic that exploits the temporal precedence between
their experience of an intervention and any subsequent changes in
the environment. The heuristic tells us to infer that any changes
that follow an action are effects of that cause. This is often efficient
because in our everyday world, actions necessarily precede their
effects. However, it is not foolproof. We are misled when changes
subsequent to our actions are effects of a confounding cause—a
factor that is either coincidentally related to our actions or a
common cause of both our actions and the observed effect. In the
case of observation, this heuristic will be a less reliable indicator
because the order in which we receive information about causes
and effects will not always reflect their real-world order. However,
as long as there is some temporal delay between the displays of

information, people still seem to employ the heuristic. This is
evidenced by the inferences made by observers who make their
own selections prior to viewing the values of other variables (the
selected observation condition in Experiment 3). Changes subse-
quent to their selections are encoded as effects of that putative
cause, as shown by their tendency to infer either the correct causal
chain or its Markov equivalent common cause model.
This is not to deny that temporal order is a good guide to causal

order, even in cases of observation. We often experience causally
related events in the same order as that in which they occur in the
world. This is particularly true when we perceive the operation of
a physical system or process. In such cases, temporal order does
provide a very stable cue as to causal order. However, in situations
in which the receipt of information about events can be delayed
differentially, we no longer have the assurance that the order of our
experiences matches the true causal order.7
In sum, our findings suggest that people use a simple temporally

based heuristic: Once they make an intervention or selection, they
infer that any subsequent changes are effects of this cause. This is
sufficient to explain an advantage of intervention over observation,
because an intervention overrides the action of any other causes
leading into the intervened-on variable; thus, it can reasonably be
held responsible for subsequent changes. In contrast, an observa-
tion of one event followed by another event comes with no such
guarantee, because it is possible that there is a common cause of
both or that the temporal order in which these events are experi-
enced does not match their real-world order. The temporal cue
heuristic exploits this difference without requiring that people
reason about it explicitly.

Tendency to Treat Causes as Independent

In all four experiments, participants showed a tendency to
underweight the relation between putative causes in comparison
with the relation between a cause and the outcome. This was
evidenced by the derived measures for the judged strengths of
these links and by participant’s model selections. This tendency
was particularly apparent in the pure observation conditions, with
a strong bias in favor of the common effect model or a single link
model from one cause to the outcome.
A simple explanation for this is that the experimental task (and

the content of both scenarios) encouraged participants to focus on
predicting the outcome. Consequently, in the learning phase, peo-
ple were likely to pay more attention to the links from putative
causes to the outcome (e.g., the acid 3 perfume and ester 3
perfume links in the chemist scenario) and less attention to possi-
ble links between these variables (e.g., acid 3 ester). This ten-
dency was exaggerated when all three variable values were pre-
sented simultaneously (normal observation conditions in
Experiments 1–3) or when both putative causes were presented
together followed by the outcome (time-inconsistent condition in
Experiment 4). It was attenuated, however, when there were tem-
poral delays between the putative causes (time-consistent condi-
tion in Experiment 4).

7 It is also possible to receive information about an intervention after
having observed its effect. However, this typically only happens for ob-
servers of intervention rather than interveners themselves.
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This is not to claim that this prediction bias is merely an
experimental artifact. In everyday life, we are often focused on the
prediction of a target outcome on the basis of multiple cues or
causes, and a reasonable default strategy is to assume that these
cues or causes are independent. In a similar vein, many statistical
procedures default to the assumption that predictor variables are
independent (e.g., multiple linear regression).

Relation Between Model Choice and Screening-Off

What do our experiments tell us about the relation between
people’s choices of model and their probability judgments? Recent
analytic work (Pearl, 2000; Spirtes et al., 1993) has provided us
with a theoretical account of how the two should be related. Each
causal structure imposes constraints on the probabilistic dependen-
cies it can generate, and, likewise, certain sets of probabilistic
dependencies imply particular sets of causal models. For example,
the chain structure (A3 B3 C) used in our experiments implies
that A, B, and C are (unconditionally) dependent and that A and C
are independent conditional on B (screening-off). Therefore, if one
knows that these dependencies hold, one can infer that the gener-
ating structure is either the A 3 B 3 C chain or its Markov
equivalent common cause A 4 B 3 C. One question our exper-
iments raise is whether people actually make an inference from
dependencies to causal structure.
Apparent evidence in favor of this is the close fit between model

choices and conformity to screening-off for interveners who chose
the correct model in Experiments 1–3. However, this is equally
consistent with the possibility that conformity to screening-off is
determined by people’s causal models rather than vice versa.
Moreover, there are several discrepancies between model choices
and screening-off (e.g., for the observers of intervention in Exper-
iment 2 and for observers in the temporal delay conditions in
Experiment 4). Finally, under normal observation conditions, par-
ticipants uniformly failed to infer the correct causal models, even
though the requisite information was present in the data they
experienced. This raises questions about their ability to infer
structure on the basis of covariational information alone.

Constraint-Based Versus Causal-Model Approaches to
Structure Learning

Overall, our results suggest that sensitivity to the probabilistic
dependencies in the learning data is neither necessary nor suffi-
cient for inferring causal structure. This has implications for the
debate between the different computational approaches to causal
induction. For one, it suggests that people do not use purely
constraint-based methods for inferring causal structure. As previ-
ously noted, such methods require that people build up candidate
models from the conditional independencies in the data. However,
participants in our experiments failed to notice these conditional
independencies unless they got the model right; they often chose
models (e.g., common effect models) that were incompatible with
the data and they underestimated objective contingencies that did
not underlie assumed causal links within their chosen models.
Taken together, these findings are more supportive of the

causal-model approach (Waldmann, 1996), in which prior assump-
tions or knowledge guide the induction process. In particular,
assumptions about temporal priority seem to play a crucial role in

our experiments. Participants appear to generate candidate causal
structures based on the available temporal cues and encode the
learning data in the light of these models. This explains a variety
of the current findings: the underestimation of relations that are not
marked by a temporal cue (e.g., the link between the two cue
variables in observation conditions), the match between screening-
off judgments and model choices when the correct model is
inferred, the under-representation of statistical patterns in the data
that are inconsistent with the chosen model.
It also explains how people can infer the correct model on the

basis of temporal cues, even though their judgments do not respect
screening-off (e.g., in Experiment 4) and infer the incorrect model
when their judgments do respect screening-off (e.g., observation of
intervention condition in Experiment 2). Finally, it reinforces our
explanation of the bias toward a common effect model in the
normal observation conditions. The absence of any temporal delay
in the presentation of two of the variables (e.g., acid and ester)
reduces the chances of people detecting that the two are causally
linked.
In sum, the overall pattern of results across our experiments is

supportive of the causal-model approach to structure learning and
offers little support for a purely constraint-based approach. The
causal-model approach places fewer constraints on the learning
process, however, and therefore is harder to disconfirm. Neverthe-
less, our data suggest that prior assumptions about the relation
between temporal and causal priority appear to direct learning in
this paradigm.8

Relevance of Temporal Cues in Causal Learning

The idea that temporal cues play a crucial role in learning causal
structure is perhaps not too surprising. However, its importance
has not been recognized in much contemporary research due to the
focus on how people estimate the causal strength of presorted
causes and effects and the inattention to the potential differences
between intervention and observation. There is, however, some
recent research that underlines the important role that our knowl-
edge of temporal delays plays in causal learning. Hagmayer and
Waldmann (2002) demonstrated that prior assumptions about the
temporal delays between events determine which events people
pair together as cause and effect and what they select as a possible
cause. Similarly, Buehner and May (2002) showed that people can
use prior expectancies about temporal delays to modulate their
ratings of the strength of a causal relation. Relatedly, Gallistel and
Gibbon (2000) argued that the core process in animal conditioning
is the learning of temporal intervals and rates of event occurrence.
Although yet to be applied directly to human learning, it too
highlights the idea that temporal aspects of experience contribute
greatly to successful learning.
This work suggests that people’s use of a temporal cue heuristic

for inferring causal structure might be modulated by their prior
knowledge about the kinds of delays they should expect. For
example, if you take a vitamin supplement to improve the condi-
tion of your skin, you expect it to work in a few weeks rather than
a few seconds. In contrast, administering a fake tan lotion can be
expected to work in seconds or minutes rather than days. Whether

8 This section is based on suggestions made by Michael Waldmann.
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the temporal cue heuristic is restricted to events relatively close in
time or whether it can be used with longer delays is an open
question. We suspect that more automatic learning will be re-
stricted to a limited time window, whereas more reflective learning
can stretch across longer time delays.

Other Research on the Difference Between Observational
and Interventional Learning

Although we have argued that the special information provided
by intervention is not what drives the advantage in our studies, it
is possible that in different kinds of learning tasks people can make
more explicit use of this information. For example, it is possible
that in a simpler two-variable task, people would be able to infer
causal structure on the basis of interventions alone, even when the
temporal order of receipt of information is arranged to conflict
with the causal order.9
The complexity of the task may be an important factor. Recent

work by Steyvers et al. (2003), Sobel (2003), and Lagnado and
Sloman (2003) showed that when the task of detecting correlations
is relatively simple, people are better able to distinguish three-
variable causal structures by means of appropriate interventions.
Steyvers et al. (2003) used a task in which participants had to

induce the communication network between a group of three alien
mind readers. The use of categorical variables with many possible
states (words) allowed correlations between different mind readers
to be established in a few trials. Further, the tracking of the effects
of an intervention was facilitated by using a distinctive word that
was “implanted” in a selected alien’s head. People were tested on
a variety of three-variable structures and even with the choice of
just one intervention (which was then repeated on numerous trials),
participants performed substantially above chance (30% to 35%
correct responses) and better than when given just observational
data. The presentation of data (e.g., the words in each of the alien
heads on each trial) was simultaneous, although of necessity, an
intervention was selected before its effects could be viewed.
The authors also modeled people’s choice of intervention within

a rational framework (Tong & Koller, 2001) and found that across
the various different structures (common effect, common cause,
chain, single-link) a high proportion of these interventions were
close to optimal with regard to maximizing information about
causal structure. The exception here was the chain structure, in
which participants preferred to intervene on the first (source) node
of a chain rather than on the more diagnostic intermediate node.
However, it is not clear from the averaged results whether this bias
led to a correspondingly poor discrimination of chain structures.
Overall, these findings are explicable in terms of the modification-
based information unique to interventions; however, they are also
consistent with the operation of a temporal heuristic.
The studies by Sobel (2003) involved networks of colored lights

with color-sensitive sensors. Participants either observed trial-
based combinations of these lights (on or off) or made interven-
tions by activating one light at a time and observing its effects.
Performance across a set of five three-variable models was rela-
tively high (66% in intervention), although participants were un-
able to distinguish a causal chain from a structure with an addi-
tional link. Here again, one possible conclusion is that people use
modification-based information to infer causal structure. However,
the patterns of results are also explicable in terms of temporal cues.

Lagnado and Sloman (2003) used a real-time paradigm in which
people either observed or manipulated a network of on-screen
sliders. The presentation format greatly facilitated the detection of
correlations between components and led to a very high proportion
of correct model selections (over 90%). Moreover, with chains,
people were able to make the additional intervention required to
uniquely identify the true structure.
One important factor that differentiates these studies from the

current experiments is that their learning environments prevented
interveners from being misled by spurious correlations between
their interventions and subsequent changes in other variables. This
factor is likely to have boosted interveners’ ability to learn causal
structure. It guarantees that after intervening on a particular vari-
able, any subsequent changes in other variables are indeed effects
of that cause. In contrast, in our current experiments, participants
were readily misled, because there was a relatively high probabil-
ity (0.5) that a spurious change would occur after an intervention
on the intermediate variable of a chain.
What all of these studies suggest is that if the initial task of

detecting correlations between variables is facilitated, people are
better able to use interventions to infer causal structure. Although
the use of modification-based information cannot be ruled out, this
advantage is sufficiently explained by the temporal cue associated
with intervention.

Relevance to Models of Causal Learning

The predominant psychological models of causal learning are
either rule-based (e.g., Allan, 1993; Cheng, 1997) or associative
(e.g., Shanks & Dickinson, 1987; Shanks, 1995; Van Hamme &
Wasserman, 1994). These have typically been applied to the esti-
mation of causal strength given a known causal structure, usually
a common effect model. Although neither have been directly
applied to the kind of structure learning examined in this article, it
is possible to anticipate how the frameworks might be applied to
accommodate our results.
Rule-based models assume that people encode appropriate event

frequencies during the learning phase and then compute causal
strengths according to some integrating rule. By extension we
could assume that they explain structure learning in a similar
fashion by computations on the basis of the encoded frequency
data. Our findings, however, indicate that people do not seem able
to infer the correct causal structure on the basis of atemporal data
alone, as evidenced by their poor performance in pure observation
conditions. Furthermore, such an account gives no explanation for
the advantage of intervention over observation. This does not mean
that a rule-based account could not be augmented to deal with
these factors; however, a satisfactory theory must explain how the
temporal cues provided by people’s interventions or selections
enhance their ability to learn causal structure.
Associative models assume that people engage in the predictive

learning of effects from causes (or vice versa) and that they base
their causal judgments on these learned associations. The bias that
we found in favor of a common effect model (and in later exper-
iments a single link model) would be explicable on an associative
account under the assumption that observers are treating the two

9 This example was suggested by Michael Waldmann.
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putative causes as independent predictors of the outcome. How an
associative model would deal with the distinction between obser-
vation and intervention is less clear. The predominant learning
rule, the Rescorla-Wagner rule (1972), includes parameters for the
salience of both cues and outcomes; thus, it is possible that the
distinction between observational and interventional learning
could be marked by differences in salience. However, this would
be entirely ad hoc. A more plausible approach is to note that the
importance of temporal ordering is in some sense built into the
predictive learning rule, in which an expectation is generated on
the basis of the observed cues and then corrected in the light of the
actual outcome. The distinction between observation and interven-
tion need not be marked by the associative learning mechanism per
se but by the fact that, in the case of intervention, associative bonds
are more likely to be built up from genuine causes to genuine
effects. Once again, this is a natural consequence of the fact that
actions precede their effects.
Although this kind of approach may suffice for situations in

which people learn in a more intuitive and nonreflective manner,
it may not scale up to cases in which people deliberate about
possible causal structures and carry out appropriate tests (e.g.,
quasiscientific experimentation). A related problem for an asso-
ciative account is to give a plausible account of how people learn
more complex causal structures—how do people stitch together
simple associations to create models with multiple connections?

Conclusions

A critical difference between intervention and observation is
that in the former one can modify the causal system under inves-
tigation. This difference is formalized within the Causal Bayes net
framework (Pearl, 2000; Spirtes et al., 1993), and Sloman and
Lagnado (2002, 2003) showed that when people reason on the
basis of known causal structure, they are able to represent inter-
ventions distinctly from observations. In contrast, our current
experiments suggest that when inducing causal structure, people
do not represent the difference between intervention and observa-
tion explicitly but use a temporal heuristic in both learning con-
texts. The advantage for intervention derives from the fact that the
temporal cue is a more stable indicator of actual temporal order
when one is intervening on a system rather than when one is
passively observing it. In short, actions must always precede their
effects, whereas the temporal order in which we receive informa-
tion about events or variable values need not always reflect the
order in which they actually take place in the world.
We do not suggest that this temporal heuristic excludes the

possibility of other routes for interventional learning. In particular,
both modification and selection-based information are likely to
play a significant role in certain induction tasks. However, inter-
ventions can aid causal structure learning without an individual
having to engage in sophisticated computations. Interventions may
improve learning because they modify the system under investi-
gation rather than the representation of the system.
This conclusion implies that there is a discontinuity between the

unreflective causal learning investigated in this article and the
more deliberate hypothesis testing characteristic of experimen-
tal sciences. The latter involves explicit representation of the
informational consequences of experimental manipulation,
whereas the former relies on more primitive associative pro-

cesses (cf. Evans & Over, 1996; Sloman, 1996). This is not to deny
the crucial role that intervention plays in the discovery of causal
structure but to suggest that our cognitive mechanisms sometimes
exploit rather than understand the difference between experiment
and observation.
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