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A B S T R A C T   

Neurocomputational theories have hypothesized that Bayesian inference underlies interoception, which has 
become a topic of recent experimental work in heartbeat perception. To extend this approach beyond cardiac 
interoception, we describe the application of a Bayesian computational model to a recently developed gastro
intestinal interoception task completed by 40 healthy individuals undergoing simultaneous electroencephalo
gram (EEG) and peripheral physiological recording. We first present results that support the validity of this 
modelling approach. Second, we provide a test of, and confirmatory evidence supporting, the neural process 
theory associated with a particular Bayesian framework (active inference) that predicts specific relationships 
between computational parameters and event-related potentials in EEG. We also offer some exploratory evidence 
suggesting that computational parameters may influence the regulation of peripheral physiological states. We 
conclude that this computational approach offers promise as a tool for studying individual differences in 
gastrointestinal interoception.   

1. Introduction 

There is growing interest in understanding the neural basis of 
interoception, with an emerging literature on both theoretical models 
and empirical studies (Berntson & Khalsa, 2021; Bonaz et al., 2021; 
Chen et al., 2021; Petzschner, Garfinkel, Paulus, Koch, & Khalsa, 2021; 
Quigley, Kanoski, Grill, Barrett, & Tsakiris, 2021; Weng et al., 2021). 
Aside from basic science interests, interoception has also become an 
important topic of mental health research, with evidence for abnor
malities in depression, anxiety, eating, and substance use disorders, 
among others (reviewed in (Khalsa et al., 2018)). Theoretical work 
within neuroscience and psychiatry has articulated plausible neuro
computational accounts of interoceptive processing (Allen, Levy, Parr, & 
Friston, 2019; Barrett & Simmons, 2015; Owens, Allen, Ondobaka, & 
Friston, 2018; Owens, Friston, Low, Mathias, & Critchley, 2018; Paulus, 
Feinstein, & Khalsa, 2019; Petzschner, Weber, Gard, & Stephan, 2017; 
Seth, 2013; Seth & Critchley, 2013; Smith, Thayer, Khalsa, & Lane, 
2017; Stephan et al., 2016), largely extending from leading Bayesian 
models of exteroceptive (Bastos et al., 2012; Friston, 2005), cognitive 
(Chen, Takahashi, Nakagawa, Inoue, & Kusumi, 2015; Clark, Watson, & 
Friston, 2018; Friston, Stephan, Montague, & Dolan, 2014; Huys, Maia, 
& Frank, 2016; Montague, Dolan, Friston, & Dayan, 2012; Moutoussis, 

Shahar, Hauser, & Dolan, 2017; Parr & Friston, 2018; Schwartenbeck & 
Friston, 2016; Sharp & Eldar, 2019), emotional (Hesp, Smith, Allen, 
Friston, & Ramstead, 2020; Smith, Lane, Parr, & Friston, 2019; Smith, 
Parr, & Friston, 2019), and motor control domains (Adams, Perrinet, & 
Friston, 2012; Adams, Shipp, & Friston, 2013; Edwards, Adams, Brown, 
Pareés, & Friston, 2012). A few studies have also tested predictions of 
Bayesian computational models and fit such models to behavioral data 
on interoception tasks in both healthy and psychiatric samples 
(Petzschner et al., 2019; Smith, Kuplicki, Feinstein et al., 2020; Smith, 
Kuplicki, Teed, Upshaw, & Khalsa, 2020; Harrison et al., 2021). 

The most common paradigms for studying interoception within 
psychological research settings have traditionally focused on heartbeat 
perception (for a review see (Khalsa & Lapidus, 2016)). However, car
diac perception is generally quite poor, with only roughly 35% of in
dividuals accurately perceiving their own heartbeats at rest (Khalsa & 
Lapidus, 2016). Using heartbeats as task stimuli also presents unique 
challenges, as their intensity and timing cannot be tightly controlled in 
the absence of a pharmacological perturbation (Cameron & Minoshima, 
2002; Khalsa, Rudrauf, Sandesara, Olshansky, & Tranel, 2009). The 
predominant focus on cardiac interoception is understandable given the 
ease with which this signal can be measured, but the limitations of 
certain heartbeat perception tasks have been raised repeatedly in recent 
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years (Corneille, Desmedt, Zamariola, Luminet, & Maurage, 2020; 
Desmedt, Luminet, & Corneille, 2018; Murphy et al., 2018; Phillips, 
Jones, Rieger, & Snell, 1999; Ring & Brener, 2018; Ring, Brener, Knapp, 
& Mailloux, 2015; Windmann, Schonecke, Frohlig, & Maldener, 1999; 
Zamariola, Maurage, Luminet, & Corneille, 2018); but see (Ainley, 
Tsakiris, Pollatos, Schulz, & Herbert, 2020)). Other major reasons for the 
heavy utilization of cardiac interoception measures in psychological 
research include the inaccessibility of the body’s interior and the lack of 
(and difficulty designing) minimally invasive tasks to assess other 
modalities. 

In a recent study we described a new method for studying gastro
intestinal (GI) interoception that made use of mechanosensory stimu
lation via an ingestible vibrating capsule (Mayeli et al., 2021). Using an 
instruction set similar to heartbeat tapping paradigms, participants were 
asked to press a button whenever they felt a vibration sensation in their 
stomach. However, unlike heartbeats, the vibration timing and intensity 
could be precisely controlled. As an initial validation, we showed that 
standard signal detection measures could capture interesting behavioral 
and perceptual patterns in the data and that the vibrations reliably eli
cited electroencephalogram (EEG) event-related potential (ERPs) in a 
manner that was sensitive to vibration intensity. In the present study, we 
extend this work by applying a Bayesian computational modelling 
approach to this data, which we previously developed for a heartbeat 
tapping paradigm (Smith, Kuplicki, Feinstein et al., 2020; Smith, 
Kuplicki, Teed et al., 2020). This approach has the advantage of being 
able to capture learning dynamics that cannot be measured by signal 
detection approaches, as well as interactions between Bayesian beliefs 
about the precision of afferent GI signals (interoceptive precision; IP) 
and prior expectations. Successfully estimating these parameters could 
provide information of potential clinical relevance to conditions in 
which GI symptoms play a primary role. 

In this paper we also provide a direct test of recently proposed neural 
process theories within the Bayesian framework known as active infer
ence (Friston, FitzGerald, Rigoli, Schwartenbeck, & Pezzulo, 2017; 
Friston, Parr, & de Vries, 2017; Parr & Friston, 2018; Smith, Friston, & 
Whyte, 2021). Active inference postulates that ERP amplitudes are 
positively associated with the rate of change in beliefs in response to 
sensory stimuli. Therefore, if a sensory signal is expected to be reliable 
(high precision), it should be associated with larger ERPs (i.e., due to a 
faster evidence accumulation rate). Active inference also postulates a 
hierarchical structure in which higher-level (e.g., frontal) brain regions 
convey signals downward to sensory cortices – providing sensory pro
cessing with prior beliefs about what will be perceived. Here, if prior 
beliefs predict a sensation, then the presentation of a congruent stimulus 
should generate smaller ERPs, because beliefs do not need to change as 
much to account for the new observation. A primary means of learning 
in Bayesian models occurs through updating prior beliefs over slower 
timescales – where these slower-timescale processes are predicted to 
occur in higher brain regions (Kiebel, Daunizeau, & Friston, 2008; 
Murray et al., 2014; Smith, Steklis, Steklis, Weihs, & Lane, 2020). A 
large literature in computational neuroscience and psychiatry has also 
shown that individuals differ in the magnitude with which their prior 
beliefs are updated after each new observation (i.e., differences in 
learning rate; e.g., see (Browning, Behrens, Jocham, O’Reilly, & Bishop, 
2015; Chen et al., 2015; Huang, Thompson, & Paulus, 2017; Smith, 
Schwartenbeck et al., 2020)). Thus, in addition to basic validation an
alyses, we tested the specific hypotheses that: 1) higher interoceptive 
precision (IP) values would be associated with stronger ERPs in sensory 
processing regions (i.e., parieto-occipital leads sensitive to capsule vi
brations in our previous study), and 2) learning rates – which constrain 
the magnitude of change in prior beliefs after each observation – would 
modulate the amplitude of ERPs in the hierarchically higher frontal 
regions associated with these slower-timescale processes. We also ex
pected that 3) more precise prior expectations to feel a vibration would 
be associated with attenuated ERPs when a vibration occurs. 

2. Materials and methods 

2.1. Participants 

40 healthy volunteers between the ages of 18 and 40 years (mean =
22.9, standard deviation (SD) = 4.56; 21 male and 19 female, mean 
body mass index (BMI) = 24.18, SD = 3.03) were recruited from the 
general community within and surrounding Tulsa, Oklahoma through 
electronic and print advertisements. Participants completed structured 
medical and psychiatric screening evaluations including the MINI (Mini- 
International Neuropsychiatric Interview) (Sheehan et al., 1998). 
Exclusion criteria included current pregnancy, testing positive for drugs 
of abuse (as defined by a urine screen during screening and during the 
study visit), a current diagnosis of a psychiatric disorder based on the 
MINI (Sheehan et al., 1998), past or present diagnosis of a significant 
gastrointestinal disorder, gastrointestinal surgery, a respiratory, car
diovascular, renal, hepatic, biliary or endocrine disease, as well as 
chronic use of psychotropic medications or non-steroidal anti-in
flammatory drugs. The study was conducted at the Laureate Institute for 
Brain Research and the study protocol was approved by the Western 
Institutional Review Board (IRB). All participants provided written 
informed consent and they received financial compensation for 
participation. 

2.2. Vibrating capsule 

The study protocol asked individuals to swallow a capsule that would 
generate potentially perceivable vibration sensations while in the 
stomach before passing through the digestive tract. The vibrating 
capsule was developed by Vibrant Ltd (Israel) and is under investigation 
as a non-pharmacologic therapeutic option for chronic constipation 
using delivery of stimulation in the colon. It consists of an orally 
administered non-biodegradable capsule that is wirelessly activated 
using an activation base unit (Fig. 1). The safety of this approach has 
been established in both healthy human volunteers (Ron et al., 2015) 
and in patients with chronic constipation (Nelson et al., 2017; Rao, 
Lembo, Chey, Friedenberg, & Quigley, 2020). The Vibrant capsule is a 
non-significant risk device (NSR). 

2.3. Masking procedure 

Participants were told that two different modes of the Vibrant 
capsule were being evaluated, and that they would be randomly 
assigned to one of three arms of the study (capsule mode A, capsule 
mode B, or a placebo capsule that did not vibrate). This was done to 
minimize demand characteristics (i.e., expectations that they should 
perceive vibrations during the experiment). Participants were further 
informed that neither they nor the experimenter would know the 
assigned condition. However, each participant in fact received a capsule 
that delivered vibratory stimulations, making this a single-blinded 
protocol. Participants were instructed to begin fasting (defined as no 
food or drink) for 3 h prior to the study visit to ensure that the contents 
of the stomach were empty at the time of capsule ingestion. 

2.4. Mechanosensory stimulation 

Capsules were activated by placing them in the base unit. Immedi
ately after activation, participants swallowed the capsule with approx
imately 240 mL of water, while seated in a chair. After ingestion, 
participants were asked to pay attention to their stomach sensations 
while resting their eyes on a fixation cross displayed on a monitor 
approximately 60 cm away. Participants were instructed to use their 
dominant hand to press and hold a button each time they felt a sensation 
that they ascribed to the capsule, and to release the button once the 
vibration sensation ceased (Fig. 1). Vibrations began approximately 3 
min after capsule activation in the base unit. Participants remained 
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seated throughout the experiment to minimize movement artifact in the 
EEG and electrogastrogram (EGG) signals. They were told to rest their 
non-dominant hand in their lap and avoid palpating their abdomen. 
Throughout the experiment they were visually observed by a research 
assistant seated behind them to verify alertness and compliance with 
instructions. 

In the experiment, each participant received two blocks of vibratory 
stimulation (normal and enhanced stimulation level) in counter
balanced order (19 received the normal block first, 21 received the 
enhanced block first). The normal condition entailed the delivery of a 
standard level of mechanosensory stimulation (as developed by Vibrant) 
consistent with the level of stimulation delivered during chronic con
stipation trials targeting the colon. The enhanced condition entailed 
delivery of an increased level of mechanosensory stimulation that was 
expected to facilitate gastrointestinal perception. Each block included a 

total of 60 stimulations (with each stimulation being 3 s in duration), 
which were delivered in a pseudorandom order (i.e., pseudorandom 
inter-vibration intervals ranging between 6 and 23 s) across a 13-minute 
period. After a 4-minute pause, a second round of 60 stimulations were 
delivered in pseudorandom order during a second 13-minute period 
(resulting in a 33-minute period of participation following capsule 
ingestion). This timing ensured that the capsule remained in the stomach 
during stimulations, since the normal gastric emptying time is estimated 
to be approximately 30 min (Benini et al., 2004; Bluemel et al., 2017; 
Diamanti et al., 2003). Due to a technical error, 3 vibrations failed to 
occur in the enhanced vibration block (irrespective of 
counterbalancing). 

Fig. 1. A) Vibrating capsule and activation base. B) The push button which participants were asked to press as soon as they detected a capsule-induced stomach 
sensation. C) Scalp electroencephalogram (EEG) and stomach electrogastrogram (EGG) lead placement. Additional collected peripheral physiological measures 
included electrocardiogram and skin conductance. D) Heuristic depiction of computational (Bayesian) model of task behavior. 

R. Smith et al.                                                                                                                                                                                                                                   



Biological Psychology 164 (2021) 108152

4

2.5. Vibration detection 

A digital stethoscope (Thinklabs One, Thinklabs Inc., USA) was 
gently secured against the surface of the lower right quadrant of the 
abdomen using a Tegaderm patch (15 × 20 cm, 3M Inc., USA) to pre
cisely verify the vibration timing. The associated signal was continu
ously recorded during the entire experiment at a sampling rate of 1000 
Hz and fed into the physiological recording software. We developed 
custom analysis scripts in Matlab (version 2019b, Mathworks, Inc.) to 
confirm the timing of each vibration, including a two-step procedure to 
detect their onset and offset. In the first step, the script identified the 
vibration timings automatically using the “findchangepts” function in 
Matlab. In the second step, the timing for each vibration was double- 
checked manually and adjusted if needed (see our prior report for 
more details; (Mayeli et al., 2021)). 

2.6. Physiological recordings 

Electroencephalogram (EEG) signals were recorded continuously 
using a 32-channel EEG system from Brain Products GmbH (Munich, 
Germany). The EEG cap consisted of 32 channels, including references, 
arranged according to the international 10–20 system. One of these 
channels recorded the electrocardiogram (ECG) signal via an electrode 
placed on the participant’s back, leaving 31 EEG signals available for 
analysis. The online reference for EEG recording was electrode FCz. The 
EEG signal was acquired with a 0.2 millisecond (ms) temporal resolution 
(i.e., 16-bit 5,000 Hz sampling), and a measurement resolution of 0.1 
microvolts (μV). 

Electrogastrogram (EGG) signals were recorded continuously using a 
Biopac MP150 Acquisition Unit (Biopac Inc., USA) and running 
Acknowledge software version 4.4.2 at a sampling rate of 1000 Hz. Two 
active abdominal electrodes positioned below the left costal margin and 
between the xyphoid process and umbilicus were utilized to capture 
cutaneous EGG signals. The reference electrode was positioned in the 
right upper quadrant in line with the others (Dirgenali, Kara, & Okke
sim, 2006). 

The same Biopac MP150 Acquisition Unit was used to record the skin 
conductance response (SCR) and ECG at a sampling rate of 1000 Hz. SCR 
was recorded via two gel-filled electrodes placed on the thenar and 
hypothenar eminences of the nondominant palm. The ECG signal was 
obtained using two electrodes positioned in a lead-2 placement. All 
physiological recordings were screened for artifacts (e.g., motion) and 
analyzed offline using AcqKnowledge version 4.4.2 and Matlab version 
2019b. A 30-minute eyes open period of recording preceded the capsule 
ingestion for baseline estimation of resting peripheral physiological 
(EGG, ECG, and SCR) parameters. 

2.7. EEG data processing 

All pre- and post-processing of EEG data was completed using 
BrainVision Analyzer 2 software (Brain Products GmbH, Munich, Ger
many). Data was downsampled to 250 Hz. Next, a fourth order Butter
worth (i.e., 24 dB/octave roll off) band-rejection filter (1 Hz bandwidth) 
was applied to remove alternating current (AC) power line noise (60 
Hz). Then, a bandpass filter between 0.1 and 80 Hz (eighth order But
terworth Filter, 48 dB/octave roll off) was utilized to filter out signals 
unrelated to brain activity. Infomax independent component analysis 
(ICA) was then applied for independent component decomposition (Bell 
& Sejnowski, 1995) over the entire data length, after excluding intervals 
with excessive motion-artifact. ICA was run on the data from 31 EEG 
channels yielding 31 independent components (ICs). The timecourse 
signal, power spectrum density, topographic map, and energy of these 
ICs were utilized to detect and remove artifactual ICs (i.e., muscle, 
ocular, and single channel artifacts) (Mayeli, Zotev, Refai, & Bodurka, 
2016). Additional steps were also applied to identify the ERP signals (see 
Mayeli et al., 2019). The data was first segmented from the 200 ms prior 

to each vibration to the 3000 ms post onset of each vibration, allowing 
baseline correction to the average of the 200 ms interval preceding the 
vibration onset. Next, EEG data was re-referenced to the average of the 
mastoid channels (TP9 and TP10). Automated procedures were then 
applied to detect bad intervals and flatlining in the data. Bad intervals 
were defined as those with any change in amplitude between data points 
that exceeded 50 μv or absolute fluctuations exceeding 200 μV in any 
200 ms interval of the segments (i.e., -200 to 3000 ms); flatlining was 
defined as any change of less than 0.5 μV in a 200 ms period. Trials that 
included any of these artifacts were excluded. Based on initial inspection 
of the ERP waveform, there was a prominent late positive deflection in 
the ERP signal peaking around 600 ms and lasting up to 3000 ms (see 
Fig. 6 in results section below). To capture the peak of this response, for 
each electrode we measured the response to a vibration as the mean 
amplitude of activation from 300 to 600 ms after vibration onset (i.e., 
starting on the downward slope of this deflection and continuing to 
include its maximum amplitude) relative to a baseline value defined by 
the average of the EEG signal 200 ms prior to onset. Although much less 
pronounced, further inspection suggested there was also a negative 
deflection within an earlier window peaking around 150 ms in certain 
electrodes. To capture this response, for each electrode we measured the 
response to a vibration as the mean amplitude of activation from 100 to 
176 ms (this choice of time window was also informed by contrasts of 
the normal vs. enhanced stimulation blocks in our previous study; see 
(Mayeli et al., 2021) for further details). We therefore also examined the 
possibility of a relationship between computational parameters and re
sponses within this early time window. 

2.8. Peripheral physiological data processing 

The single-channel EGG recording from each participant was divided 
into baseline (pre-stimulus), normal, and enhanced windows based on 
the counterbalanced protocol. For each window, the spectral power was 
computed to identify the location with the largest activity in the nor
mogastria range (2.5–3.5 cycle per minute (cpm)). The spectral power 
analysis retained peaks of frequency in each condition for each partic
ipant. Fast Fourier Transform (FFT) from the FieldTrip toolbox version 
2020-12-02 (Oostenveld, Fries, Maris, & Schoffelen, 2011) was utilized 
to estimate the spectral power with a Hanning taper to reduce spectral 
leakage and control frequency smoothing. To further characterize the 
gastric rhythm, we adopted a finite impulse response (FIR) filter to filter 
the EGG signal into low frequency ranges. FIR copes very well with very 
low frequency filtering (as shown in (Wolpert, Rebollo, & Tallon-Bau
dry, 2020)). Then, a Hilbert transform was applied to compute the 
instantaneous phase and amplitude envelope of the gastric rhythm. To 
further account for bad segments in the data, we used the artifact 
detection method described in (Wolpert et al., 2020). This method relies 
on the regularity of the computed cycle durations (the SD of cycle 
duration from the condition). More specifically, a segment was consid
ered an artifact if either 1) the cycle length was greater than the mean ±
SD of the cycle length distribution, or 2) the cycle showed a non
monotonic change in phase. Following the decision tree approach, any 
cycles with either of these conditions was considered as an artifact and 
excluded. The power spectral analysis was calculated again after 
excluding bad segments from the EGG signal, including subsequent 
filtering. Here we report the absolute power for each of four gastric 
ranges: normogastria (2.5–3.5 cpm), tachygastria (3.75–9.75 cpm), 
bradygastria (0.5–2.5 cpm), and total power (0.5–11 cpm) (in line with 
(Vianna & Tranel, 2006)). 

Data from ECG recordings were used to compute the average phasic 
heart rate change in beats per minute (BPM) in response to each vi
bration. This was done by computing the BPM for the 3 s after each 
vibration onset relative to the 3 s prior to each vibration. Specifically, 
the peaks of the R-waves were used to estimate heart rate from ECG 
recordings for pre-stimulus and stimulus segments (a custom peak 
detection algorithm in Matlab was used for peak detection), and the 
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difference in heart rate between the 3-second stimulus segment and 3- 
second pre-stimulus segment was used to derive the vibration-induced 
heart rate response. As a control condition, for ECG recordings during 
the pre-task resting baseline period we generated a series of 60 pseudo- 
events with 30-second intervals within the 30-minute baseline period 
(after ignoring the first 2 min to allow for reaching a physiological 
steady state) and calculated the same response metric. To assess tonic 
heart rate levels, we additionally estimated the overall heart rate for 
each block. 

SCR was estimated using Continuous Deconvolution Analysis (CDA) 
implemented in the Ledalab Toolbox version 3.4.9 (Bach, 2014). We 
assessed phasic changes from pre-stimulus to stimulus segments (3 s 
after each vibration onset relative to the 3 s prior) using the maximum 
value of the phasic activity (i.e., peak response amplitude) metric. For 
each block, we downsampled the signal to 20 Hz and applied a 
smoothing window of 200 ms after setting the threshold of significant 
events to 0.01 microSiemens (μS). As a control condition (similar to 
analyses of heart rate above), for SCR recordings during the pre-task 
resting baseline period we used the same pseudo-events from the base
line period to characterize changes in SCR relative to physiological rest. 

2.9. Self-report measures 

Participants completed several self-report surveys indexing poten
tially relevant state factors (including Visual Analog Scales with ratings 
from 0–100). Before the task they were asked: 

“How hungry do you currently feel?” (0 = Not at all/none, 100 =
Extremely, most I have ever felt). 

“How thirsty do you currently feel?” (0 = Not at all/none, 100 =
Extremely, most I have ever felt). 

After the task they were asked: 
“Overall, how pleasant/unpleasant did your body feel during the 

capsule stimulation?” (0 = Extremely unpleasant, 100 = Extremely 
pleasant) 

“How would you describe your state of mind during the capsule 
stimulation?” (0 = Foggy/Unable to think clearly, 100 = Focused/Able 
to think with complete clarity) 

“How difficult was it to detect the stomach sensations?” (0 = Very 
easy, 100 = Very difficult) 

“How confident were you in your overall ability to accurately detect 
the capsule vibrations?” (0 = Not at all, 100 = Extremely) 

These were adapted from scales we have previously developed and 
used in studies of cardiac interoception (e.g., see (Smith, Kuplicki, 
Feinstein et al., 2020; Smith, Feinstein et al., 2021)). Participants also 
completed other previously validated affective and interoceptive mea
sures, including the Multidimensional Assessment of Interoceptive 
Awareness (MAIA; (Mehling et al., 2012)), Anxiety Sensitivity Index 
(ASI; (Sandin, Chorot, & McNally, 2001)), and Positive and Negative 
Affect Schedule (PANAS; (Watson, Clark, & Tellegen, 1988)). For a 
detailed description of these measures, see Supplementary Materials. 

2.10. Computational modelling 

Computational modelling plays a central role in our approach. 
Instead of just looking for differences or correlations between behavioral 
and physiological responses, we aim to explain these responses in terms 
of Bayesian belief updating induced by interoceptive signals. This re
quires us to model belief updating under ideal Bayesian observer as
sumptions – and then use empirical responses to estimate each 
individual’s prior beliefs, interoceptive precision, and learning rates. 
The use of ideal Bayesian observer models of this sort is sometimes 
referred to as computational phenotyping – and rests on a formal or first 
principle account of how people assimilate sensory information. 

To quantify the belief updating that underlies task performance, we 
adopted a Bayesian computational modelling approach analogous to 
that used in recent heartbeat tapping paradigms (Smith, Kuplicki, 

Feinstein et al., 2020; Smith, Kuplicki, Teed et al., 2020). This model of 
perception was derived from a Markov decision process (MDP) formu
lation of active inference that has been used in previous work; for more 
details about the structure and mathematics of this class of (discrete 
state space) models, see (Friston, FitzGerald et al., 2017; Friston, Parr 
et al., 2017; Parr & Friston, 2017; Smith, Friston et al., 2021). For a 
graphical depiction of our model and the associated vectors and 
matrices, see Fig. 2, and further descriptions in Table 1. Matlab code 
used to build this model and fit parameters to behavioral data can also 
be accessed at https://github.com/rssmith33/Gut-Inference-Mode 
l-Scripts. 

Observations (o) in the model were categorical and included no- 
vibration, vibration, and a “start” observation. Hidden states (s) in the 
model, which were inferred based on observations, were also categorical 
and included a no-vibration state, a vibration state, and a “start” state (i. 
e., the vibration observations corresponded to the ground truth, whereas 
vibration states corresponded to a participant’s perception). Each trial in 
the model corresponded to a 3-second time window during the task in 
which participants were told a vibration might be felt. Each trial 
formally had two timesteps (t = 1 and t = 2). At t = 1, the participant 
always formally began in the “start” state and made the associated 
“start” observation. At t = 2, the participant either made a no-vibration 
or vibration observation and inferred whether they had transitioned 
from the “start” state into the no-vibration or vibration state. In other 
words, they inferred a posterior distribution over states p(st=2) that 
assigned a probability to the no-vibration state and to the vibration 
state, where this posterior distribution was informed by 1) prior beliefs 
about the probability of transitioning from the “start” state to each of the 
two states, p(st=2|st=1), and 2) beliefs about the likelihood of making a 
no-vibration or vibration observation given the presence of the no- 
vibration or vibration state, p(ot |st). 

A vector D encoded prior beliefs over initial states, p(st=1), which 
specified that the participant always started the trial in the “start” state 
with a probability of 1 (see vector in upper left portion of the model 
depiction in Fig. 2). A matrix B encoded the probability that each state 
would transition into any other state: 

B = p(st+1|st) =

⎡

⎣
0 0 0

1 − pV 1 0
pV 0 1

⎤

⎦

Here, columns indicate (from left to right) the “start” state, the no- 
vibration state, and the vibration state at time t = 1, and rows (from 
top to bottom) indicate the “start” state, the no-vibration state, and the 
vibration state at time t = 2. The probability of transitioning from the 
“start” state to a vibration state vs. a no-vibration state was encoded by a 
parameter pV, where values above 0.5 indicate prior beliefs that tran
sitions from the “start” state to the vibration state are more likely (e.g., 
expecting a faster vibration rate), and values below 0.5 indicate prior 
beliefs that transitions from the “start” state to the vibration state are 
less likely (e.g., expecting fewer vibrations across the task). Note that the 
second and third columns simply indicate that, once entering a vibration 
or no-vibration state, this does not subsequently change within the trial 
(i.e., as subsequent vibration observations are modelled as subsequent 
trials). 

A matrix A encoded the probability of observations given states: 

A = p(ot|st) =

⎡

⎣
1 0 0
0 IP 1 − IP
0 1 − IP IP

⎤

⎦

Here, columns indicate (from left to right) the “start” state, the no- 
vibration state, and the vibration state, and rows (from top to bottom) 
indicate the “start” observation, the no-vibration observation, and the 
vibration observation. The probability of observing a vibration or no- 
vibration if a vibration or no-vibration state were present was encoded 
by an “interoceptive precision” parameter (IP). A value of 0.5 for IP 
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indicates minimal precision – that is, that the probability of observing a 
vibration or no-vibration is 0.5 when in either the vibration or no- 
vibration state. In contrast, a value approaching 1 indicates high pre
cision – that is, that the probability of observing a vibration is high when 
in a vibration state and low when in a no-vibration state (and vice-versa 
when observing no-vibration). Thus, precision here simply reflects how 
peaked vs. flat the probabilistic mapping is between states and 
observations. 

The probability over states for the first timepoint (st=1) was always 
equal to 1 over the start state. Belief updating in the perception model 
was based on the following equation at time t = 2: 

st=2 = σ
(
lnBst=1 + lnATot=2

)

This equation corresponds to Bayesian inference, in which prior 
beliefs (lnBs t=1) are integrated with the likelihood distribution and the 
vibration or no-vibration observation at the second timepoint 
(lnATot=2), and then converted into a proper probability distribution via 
a softmax (normalized exponential) function σ(∙) – leading to a posterior 
distribution over vibration states (st=2). 

Our response model formally included two actions, the choice to 
press the button or not press the button. This model made the assump
tion that the probability of choosing to press vs. not press the button 
corresponded to the posterior probability assigned to the vibration vs. 
no-vibration state at time t = 2 in each trial: 

p(press) = p(st=2 = vibration)

In other words, button-pressing behaviors were sampled from the 
posterior distribution over vibration vs. no-vibration states, such that 
choices to press the button became more likely as the posterior proba
bility of a vibration state approached 1 and choices not to press the 
button became more likely as the posterior probability of a vibration 
state approached 0. No further parameters were included in the response 
model to account for behavioral stochasticity. This is because, in the 
context of the present task, parameters encoding randomness in 
behavior cannot be distinguished from IP, as both effectively control the 
precision of the posterior distribution from which button-pressing ac
tions are sampled in response to the vibration/no-vibration signal. 
However, because button-pressing could be registered at any point 
within the 3-second vibration window, the explanatory role of motor 
stochasticity if participants intended to press the button appeared 
minimal. 

Aside from IP and pV, a number of additional parameters were 
considered, such as the possibility that IP differed between normal and 
enhanced blocks, whether participants updated the values of IP and pV 
over time, and whether this type of learning occurred at different rates 
for different individuals. In the present task context, and as described 
further below, learning rate parameters specifically allow for the pos
sibility that a participant might update beliefs differently in response to 

Fig. 2. Bayesian approach used to model interoceptive awareness on the vibration detection task. The generative model is here depicted graphically, such that 
arrows indicate dependencies between variables. Associated vectors/matrices are also shown. At each timepoint (t), observations (o) depend on hidden states (s), 
where this relationship is specified by the A matrix, and those states depend on previous states (as specified by the B matrix), or on the initial states (with prob
abilities specified by the D vector). This model represents a simplified version of a commonly used active inference formulation of partially observable Markov 
decision processes (for more details regarding the structure and mathematics describing these models, see (Da Costa et al., 2020; Friston, Lin et al., 2017; Friston, 
FitzGerald et al., 2017; Smith, Friston et al., 2021)). In this model, the observations were no-vibration/vibration, and the hidden states included beliefs about the 
presence or absence of a vibration. Selection of the button press vs. no button press actions were sampled from the posterior distribution over states (p(st=2)) – that is, 
a higher posterior probability of a vibration state (p(Vib)) corresponded to a higher probability of choosing to push the button, and a higher posterior probability of 
the no-vibration state (p(nVib)) corresponded to a higher probability of choosing not to press the button. The model parameters we estimated corresponded to: 1) 
interoceptive precision (IP) – the precision of the mapping from true vibrations to beliefs about vibrations in the A matrix, which can be associated with the weight 
assigned to interoceptive prediction errors; 2) prior beliefs favoring the presence of a vibration (pV); and 3) a learning rate (η) that controls how quickly prior beliefs 
change after each observation (where distinct learning rates can be fit for when a vibration is vs. isn’t observed). On each trial, beliefs about the probability of a 
vibration (corresponding to the probability of choosing to press the button) relied on Bayesian inference as implemented in the “gastrointestinal perception” equation 
shown on the right of the figure, and changes in prior beliefs were controlled by the learning equation below this (explained in the main text). Note that the state 
variable s in these equations corresponds to posterior expectations. Each 3-second time period in which a vibration was or was not present was treated as a separate 
trial, in which the participant started in the “start” state and then updated beliefs about hidden states based on observation of a vibration (or no-vibration). For this 
reason, the pV parameter in the transition matrix (B) only specifies the probability of transitioning from the “start” state to the vibration vs. no-vibration states, and 
the vibration and no-vibration states simply have identity mappings (i.e., a given trial cannot transition between these two states). 
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the perceived presence or absence of a vibration. For example, the prior 
belief that a vibration will be felt may increase quickly with each 
perceived vibration, but decay more slowly during the variable-length 
intervals between vibrations. 

To assess for the presence of learning and/or block-specific pre
cisions, we used Bayesian model comparison to evaluate the relative 
evidence for several models including different combinations of these 
parameters (see Table 2), including 1) a difference in IP between blocks 
(IPdiff), where IP = IP − IPdiff within the normal block; 2) learning (with 
different possible learning rates) for updating IP; and 3) learning (with 
different possible learning rates) for updating pV. As mentioned above, 
we also considered models in which learning rates differed when 
observing the presence vs. absence of a vibration. Learning within our 
model involves updating beliefs about pV and/or IP after each trial (3- 
second window). In the case of pV, every time a vibration is felt, prior 
beliefs favoring feeling a vibration go up, and every time no-vibration is 
felt this (relative) belief goes back down. Formally, this corresponds to 
updating the concentration parameters of Dirichlet (Dir) priors associ
ated with the B matrix (b) that specify beliefs about state transitions. At 
trial = 1: 

p(B) = Dir(b)

b = p(st+1|st) =

⎡

⎣
0 0 0

1 − pV 1 0
pV 0 1

⎤

⎦

btrial+1 = btrial + ηpV ×
∑

t
st+1 ⊗ st  

Here ⊗ indicates the cross-product, and ηpV is a scalar that controls the 
magnitude of change in concentration parameters after each trial. 
Learning IP is similar: 

p(A) = Dir(a)

a = p(ot|st) =

⎡

⎣
1 0 0
0 IP 1 − IP
0 1 − IP IP

⎤

⎦

atrial+1 = atrial + ηIP ×
∑

t
ot ⊗ st 

Table 1 
Description of computational model elements.  

Model 
variable 

General definition Model-specific description 

t  Timepoint within a trial There were 2 timepoints in each trial (i.e., for each 3-second time window). At t = 1, the 
participant was modelled as waiting to infer the presence or absence of a vibration in a “start” 
state. At t = 2, either a vibration or no-vibration observation was presented (depending on 
whether the time window for that trial contained a vibration or no-vibration), and a posterior 
probability of the presence vs. absence of a vibration was inferred. Note that t here refers to a 
participant’s beliefs about a timepoint in each trial. This means that before a participant makes 
their observation (i.e., when still in the “start” state), they have prior beliefs about the state at 
time t = 2, and these beliefs are then updated after the new observation.*  

ot  Observable outcomes at time t Outcomes:  
1 Start  
2 Vibration  
3 No-vibration 

st  Posterior beliefs over hidden states at time t Hidden states:  
1 Start  
2 Vibration  
3 No-Vibration 

A matrix 
p(ot |st)

A matrix encoding beliefs about the relationship between hidden 
states and observable outcomes (i.e., the probability that specific 
outcomes will be observed given specific hidden states). 

Encodes beliefs about the relationship between vibration vs. no-vibration states and vibration vs. 
no-vibration observations. The precision of the relationship between vibration/no-vibration 
states and vibration/no-vibration observations is controlled by a parameter IP. This parameter 
specifies how much evidence a vibration observation (i.e., the vibration signal from the stomach) 
provides for a vibration state and how much evidence the absence of a vibration observation 
provides for a no-vibration state. 

B matrix 
p(st+1 |st)

A matrix encoding beliefs about how hidden states will evolve 
over time (transition probabilities). 

Encodes the prior belief that either a vibration or no-vibration state would occur in each 3-second 
window, as controlled by a parameter pV. 

D vector 
p(st=1)

A vector encoding beliefs about (a probability distribution over) 
initial hidden states. 

This specifies that the individual always begins in an initial starting state.  

* Note that in the active inference literature these beliefs about timepoints are often instead denoted with the Greek letter tau (τ) in order to distinguish them from the 
times (t) at which new observations are presented (for details, see (Smith, Friston et al., 2021)). Although this technical point is not emphasized in the main text, it is 
what allows a participant’s beliefs about τ = 2 (presence or absence of a vibration) in our model to change from before (t = 1) to after (t = 2) making a new observation 
(i.e., from prior to posterior beliefs). 

Table 2 
Model Comparison Results.  

Parameter IP IPdiff pV ηIP  ηpV  

Value if not 
estimated 

(always 
estimated) 

0 (always 
estimated) 

(removed 
from 
model) 

(removed 
from 
model) 

Model 1 Y N Y N N 
Model 2 Y Y Y N N 
Model 3 Y N Y N Y 
Model 4 Y Y Y N Y 
Model 5 Y N Y N Y (Split) 
Model 6 * Y Y Y N Y (Split) 
Model 7 Y N Y Y N 
Model 8 Y N Y Y Y 
Model 9 Y N Y Y Y (Split) 
Model 10 Y N Y Y (Split) N 
Model 11 Y N Y Y (Split) Y 
Model 12 Y N Y Y (Split) Y (Split) 

Legend. Y indicates the parameter was included for that model; N indicates it 
was not included in the model; Y (Split) indicates that the corresponding 
learning rate was split for that model (separate learning rates for vibration and 
no-vibration trials). ηIP corresponds to learning rate for IP values (if learned), 
whereas ηpV corresponds to learning rate for pV values (if learned). 

* Winning Model. 
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This equation entails that the probability of a vibration observation 
given a vibration state should increase if one observes a vibration 
observation while believing that one is in a vibration state (and so forth 
for each combination of observations and state beliefs), with a learning 
rate of ηIP. 

Thus, the final parameters estimated for each participant (in 
different combinations in different models) included IP, IPdiff, pV, and 
learning rate (η; where distinct learning rates could apply to IP and pV 
under no-vibration and vibration states/observations). Our approach to 
parameter estimation employed a commonly used Bayesian optimiza
tion algorithm (called Variational Bayes) to estimate each participant’s 
parameter values that maximized the likelihood of their responses 
(under the assumption that a higher/lower probability assigned to 
feeling a vibration corresponded to a higher/lower probability of 
choosing to press the button), as described in (Schwartenbeck & Friston, 
2016). We optimized these parameters for each model using this like
lihood and variational Laplace (Friston, Mattout, Trujillo-Barreto, Ash
burner, & Penny, 2007), implemented within the spm_nlsi_Newton.m 
parameter estimation routine available within the freely available 
SPM12 software package (Wellcome Trust Centre for Neuroimaging, 
London, UK, http://www.fil.ion.ucl.ac.uk/spm). This estimation 
approach has the advantage of preventing overfitting, due to the greater 
cost it assigns to moving parameters farther from their prior values. 
Estimating parameters required setting prior means and prior variances 
for each parameter. The prior variance was set to a high precision value 
of 1/4 for each parameter (i.e., deterring overfitting), and the prior 
means were set as follows: IP = .95, IPdiff = .2, pV = .5, and η = .5. Our 
decision for selecting these priors was motivated in part by initial sim
ulations confirming that parameter values were recoverable under these 
prior values (reported in Results section). The pV and η prior values were 
further chosen to minimize estimate bias, as pV = .5 assumes flat prior 
beliefs, and η = .5 does not bias estimates in favor of values closer to its 
extremes of 0 or 1. IP and IPdiff priors were based on preliminary in
spection of behavior using model-free accuracy measures. After fitting 
parameters for each model (Table 2 lists the models we included), we 
then performed Bayesian model comparison (based on (Rigoux, Ste
phan, Friston, & Daunizeau, 2014; Stephan, Penny, Daunizeau, Moran, 
& Friston, 2009)) to determine the best model. Once the winning model 
was established, we ran analyses to confirm that parameters in this 
model were recoverable. Namely, we simulated behavior under the 
range of parameter value combinations characterizing each participant, 
estimated parameters from this simulated data, and then ran correla
tions confirming that the generative parameters and estimated param
eters were highly correlated. Parameter estimates in the winning model 
were subsequently used for between-subjects analyses. 

2.11. Statistical analysis 

As our focus here was on methodological validation, between- 
subjects analyses focused on expected and potentially moderating re
lationships between model parameters and self-report/demographic, 
EEG, and peripheral physiological (EGG, heart rate, and skin conduc
tance responses) measures. For self-report/demographic measures, we 
ran exploratory Pearson correlations with model parameters. These 
were not meant to test specific hypotheses, but simply to characterize 
potential moderating influences or relationships that would support 
parameter construct validity. We treat these correlations primarily as 
hypothesis-generating. However, we also report results of a supple
mentary canonical correlation analysis (using the CCP and CCA pack
ages in R: https://cran.r-project.org/web/packages/CCA/CCA.pdf; http 
s://cran.r-project.org/web/packages/CCP/CCP.pdf) as a multivariate 
test to further examine the predictive validity of these exploratory cor
relations. For the interested reader, we note which correlations are 
significant at uncorrected levels. To provide further information about 
the strength of evidence for identified relationships, we also list Bayes 
factors for these correlations comparing the evidence for the presence 

vs. absence of associations between variables (using the correlationBF 
function within the BayesFactor package using default prior scales in R 
(Morey & Rouder, 2015; Rouder, Morey, Speckman, & Province, 2012)). 
The Bayes factor (BF) represents the ratio of the probability of observed 
data under one model vs. another (i.e., where a higher probability of 
data under a model provides more evidence for that model). For 
example, BF = 1 indicates equal evidence for two models, while BF = 3 
indicates three times as much evidence for one model relative to 
another. When interpreting the strength of evidence of each finding 
below, we adopt the guidelines described in Lee and Wagenmakers (Lee 
& Wagenmakers, 2014): BF = 1–3, poor/anecdotal evidence; 3–10, 
moderate evidence; 10–30, strong evidence, 30–100, very strong evi
dence, >100, extremely strong evidence. 

For the EEG analyses, we expected that sensory precision parameters 
(IP and IPdiff) would have (excitatory and inhibitory, respectively) in
fluences on signals from posterior brain regions associated with sensory 
processing (i.e., in the parieto-occipital leads examined in our previous 
study), and that pV values should have inhibitory influences on those 
signals. We also expected that pV and learning rates (reflecting hierar
chically higher and/or more slowly evolving influences) would be 
uniquely associated with frontal leads. To test these hypotheses, we first 
performed a clustering analysis to establish that recordings from parieto- 
occipital and frontal leads formed distinct response clusters (using the 
agglomerative complete linkage method within the ‘hclust’ function in 
R; https://cran.r-project.org/web/packages/fastcluster/fastcluster. 
pdf). The optimal cluster number was determined by calculating 
average silhouette widths (using the ‘pam’ function within the ‘cluster’ 
package in R; https://cran.r-project.org/web/packages/cluster/cluster. 
pdf), which score the degree to which each observation is similar to 
its own cluster relative to other clusters. We then performed an 
exploratory maximum likelihood factor analyses (using the ‘factanal’ 
function in R with varimax rotation; https://www.rdocumentation.org/ 
packages/stats/versions/3.6.2/topics/factanal) for each cluster to 
identify the latent factors accounting for the strong covariance across 
the parieto-occipital and frontal leads, respectively. We then calculated 
latent factor scores for each participant using a standard least squares 
regression method (i.e., Thomson’s method (Thomson, 1935)). Using 
these factor scores, we ran parametric empirical Bayes (PEB) analyses 
(Friston, Litvak et al., 2016; Zeidman et al., 2019) using standard Matlab 
routines (spm_dcm_peb.m, spm_dcm_peb_bmc.m) to assess the relation
ship between model parameters and parieto-occipital and frontal re
sponses, respectively. PEB computes group posterior estimates in a 
general linear model that incorporates posterior variances of 
individual-level parameter estimates when assessing evidence for 
group-level models with and without the presence of effects of interest. 
Here we ran models including age, sex, block order, BMI, and the 
identified latent factors underlying frontal and parieto-occipital re
sponses (respectively) as predictor variables. This allowed us to evaluate 
the strength of evidence for relationships between model parameters 
and both frontal and parieto-occipital responses. We then ran post-hoc 
correlations for the latent factor scores and for each lead separately to 
further interpret the identified relationships. 

For peripheral physiological measures (EGG, heart rate, SCR) we had 
no a priori hypotheses. We therefore ran simple exploratory Pearson 
correlations between model parameters and these measures (and 
calculated associated BFs) for the baseline resting period and for each 
block. 

3. Results 

3.1. Model comparison and parameter recoverability 

Table 2 shows the results of model comparison. The winning model 
(with protected exceedance probability of 0.88) included IP, IPdiff, pV, 
and separate learning rates for priors (ηpV) when observing vs. not 
observing a vibration (henceforth, ηv vs. ηnv). Recoverability analyses 

R. Smith et al.                                                                                                                                                                                                                                   

http://www.fil.ion.ucl.ac.uk/spm
https://cran.r-project.org/web/packages/CCA/CCA.pdf
https://cran.r-project.org/web/packages/CCP/CCP.pdf
https://cran.r-project.org/web/packages/CCP/CCP.pdf
https://cran.r-project.org/web/packages/fastcluster/fastcluster.pdf
https://cran.r-project.org/web/packages/fastcluster/fastcluster.pdf
https://cran.r-project.org/web/packages/cluster/cluster.pdf
https://cran.r-project.org/web/packages/cluster/cluster.pdf
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/factanal
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/factanal


Biological Psychology 164 (2021) 108152

9

confirmed that these parameters were recoverable within the range of 
values represented by participant estimates. Specifically, when gener
ating simulated behavior under the combinations of parameter values 
observed in participant estimates (and estimating parameter values for 
the simulated behavior), the correlation between true and estimated 
parameters were as follows: IP (r(33) = .91, p < .001), IPdiff (r(33) = .97, 
p < .001), pV (r(33) = .64, p < .001), ηv (r(33) = .77, p < .001), ηnv (r(33) 
= .92, p < .001). 

3.2. Model parameters and task behavior 

Means and SDs for each parameter were as follows: IP (M = .98, SD =
.02), IPdiff (M = .1, SD = .07), pV (M = .54, SD = .05), ηv (M = .54, SD =
.08), ηnv (M = .38, SD = .11). 

Because parameters were not normally distributed, they were log- 
transformed for all subsequent analyses using the R package ’optLog’ 
(https://github.com/kforthman/optLog) to find the optimal log- 
transform that minimizes skew. Model parameters showed small to 
large correlations (see Supplementary Figure S1). Notably, IP and IPdiff 
were negatively correlated (r(40) = -.52), indicating that those who had 
lower interoceptive precision in general also showed a greater decrease 
in precision in the normal block relative to the enhanced block. Learning 
rates for vibration vs. no-vibration showed a strong inverse correlation (r 
(40) = -.87), indicating that priors that increased more quickly when a 
vibration was felt also decayed more slowly when vibrations continued 
to be absent. IPdiff was also correlated with learning rates, indicating that 
individuals with a greater reduction in IP from the enhanced to normal 
block also increased their expectations to feel a vibration more slowly (r 
(40) = -.57) and decreased these expectations more quickly (r(40) = .72; 
as would be expected if vibrations in the normal block were less pre
cisely perceived). 

Model parameters showed expected relationships with other 
behavioral measures. Namely, reaction times – which are independent 
of model fitting – were faster in those with higher IP (r(40) = -.74) and 
slower in those with greater IPdiff (r(40) = .46). They were also faster in 
those who increased prior expectations to feel a vibration more quickly 
(r(40) = -.50), and slower in those for which these expectations decayed 
more quickly during the absence of vibrations (r(40) = .36). Variability 

in reactions times showed a highly similar pattern (see Fig. 3). Exami
nation of behavior in terms of true/false negatives/positives – which is 
not independent of model fitting – confirmed that higher IP (and lower 
IPdiff) tracked greater accuracy generally and that higher priors tracked 
greater numbers of both false and true positives (see Fig. 3). Learning 
rates primarily tracked true positives (facilitated by learning faster from 
vibrations) and false negatives (greater in those learning faster from the 
absence of vibrations). However, no parameter showed 1-to-1 corre
spondence with these model-free behavioral measures, but instead 
interacted within the model to generate distinct patterns in these be
haviors over time in the task. 

Model parameters did not differ by sex. Those who experienced the 
enhanced block first showed greater IPdiff (t(35) = 3.10, p = .004), 
learned more slowly from vibrations (t(36) = 2.16, p = .04), and learned 
more quickly from the absence of vibrations (t(38) = 3.09, p = .004; see 
Fig. 4). 

3.3. Relationship to self-report and demographic measures 

See Supplementary Table S1 for descriptive statistics for self-report 
and demographic information, much of which is reproduced from our 
initial report (Mayeli et al., 2021). Exploratory correlation analyses 
revealed relationships (p < .05, uncorrected) between model parameters 
and a number of variables supporting construct validity. For example, 
both IP and IPdiff were correlated with self-reported detection difficulty 
and confidence in performance (i.e., as expected, higher IP and a smaller 
drop in IP between blocks (lower IPdiff) were associated with less 
perceived difficulty and greater confidence; see Fig. 5 for exact corre
lation values and associated BFs). Interestingly, greater hunger and 
thirst at baseline, as well as a more pleasant experience during task 
performance, were also associated with smaller IPdiff. Priors showed a 
negative association with BMI and general positive affect ratings on the 
PANAS. Greater learning rates from vibrations were positively associ
ated with baseline hunger and retrospective confidence in performance, 
and greater learning rates from the absence of a vibration were associ
ated with a less pleasant task experience. No parameters showed re
lationships with age or perceived level of focus during the task. 

Tests of dimensionality in the supplementary canonical correlation 

Fig. 3. Pearson correlations between (log-transformed) 
parameter values and task reaction times (delay between vi
bration onset and button press), variability in reactions times, 
and behavioral accuracy measures (i.e., true/false positives/ 
negatives). We do not show significance indicators as these 
were not hypothesis tests, but simply descriptive analyses to 
inform parameter face validity. For reference, a correlation 
(absolute value) of r > .31 corresponds to an uncorrected p- 
value less than .05.   

R. Smith et al.                                                                                                                                                                                                                                   

https://github.com/kforthman/optLog


Biological Psychology 164 (2021) 108152

10

analysis associated with exploratory correlations shown in Fig. 5 indi
cated that the first of five canonical dimensions was statistically signif
icant (canonical correlation = .75, Wilks’ Lambda = .11, p = .045; Roy’s 
Largest Root = .57, p = .002). The canonical correlations for the second 
through fifth dimensions were = [0.68, 0.64, 0.43, 0.23]. This supports 
the predictive validity of these correlational results. 

Supplementary Figure S2 shows additional exploratory correla
tions between parameters and both the ASI and MAIA scales. Overall, 
there was limited evidence of potential relationships, with the exception 
of possibly the MAIA ‘body listening’ subscale and learning rates. 

3.4. ERP clustering analyses 

Fig. 6 illustrates example ERP waveforms evoked by vibrations in 

both parieto-occipital and frontal electrodes. 
For both the early (100− 176 ms) and late (300− 600 ms) time win

dows, our clustering analyses yielded the expected optimal 2-cluster 
solution (silhouette width = .77 and .81, respectively; see Supple
mentary Figure S3), where one cluster encompassed all parieto- 
occipital leads and the other encompassed all frontal leads (see 
Fig. 7). Factor analyses revealed that a single latent factor was sufficient 
to account for responses across each cluster (χ2 values between 213 and 
296, all ps < .001). Subsequent PEB analyses therefore focused on these 
single latent factor scores. 

3.5. Parieto-occipital ERPs 

The winning (reduced) model within PEB analyses testing for 

Fig. 4. Illustration of order effects between (log-transformed) parameter values (mean ± SE). Those who had the enhanced block first showed a greater decrease in 
interoceptive precision in the normal block (greater IPdiff), and their prior expectations that a vibration would be felt decreased more quickly (ηnv) and increased more 
slowly (ηv). 

Fig. 5. Pearson correlations between (log-transformed) 
parameter values and individual difference variables of poten
tial interest. For reference, red asterisks indicate uncorrected p- 
values (*p < .05, ***p < .001). Associated Bayes factors (BF) 
are listed below each correlation value. BMI = body mass index; 
Negative and Positive Affect scores are taken from the PANAS 
(see section on Self-Report Measures for additional information 
on the scales included in this figure) (For interpretation of the 
references to colour in this figure legend, the reader is referred 
to the web version of this article).   
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Fig. 6. Upper left: Scatterplot depicting the relationship between (log-transformed) interoceptive precision (IP) estimates and the average amplitude of the ERP 
waveform elicited by capsule vibration for a representative parieto-occipital electrode (POz; between 300-600 ms post-vibration). Bottom left: ERP waveform (mean 
± SE) elicited by vibration in POz. Upper right and lower middle panels depict analogous results for a representative frontal electrode (Fz) and (log-transformed) 
learning rate from the absence of vibrations (ηnv) – reflecting how quickly prior expectations decrease in precision during the periods (of relative length) between 
vibrations. Bottom right: Late positive potential topography across the scalp between 300 and 600 ms window after the vibration onset relative to the 200 ms pre- 
stimulus baseline across the scalp and across the entire task. Positive deflections were elicited in posterior cortices, while deflections approach neutral and negative 
values when moving toward more anterior electrodes. Positive ERP values are inverted (vice versa for negative values) per convention. 

Fig. 7. Left: Correlation matrices across all parieto-occipital and frontal electrodes for early (top) and late (bottom) post-vibration ERPs. These plots illustrate the 
strong and distinct intercorrelations within each respective cluster of electrodes. Middle: Associated dendrograms illustrating that a 2-cluster solution (aggregating 
parieto-occipital and frontal electrodes, respectively) was optimal, based on average silhouette width. Right: Loadings of each electrode onto the respective latent 
factors accounting for common activation patterns in each cluster. 
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Fig. 8. Left: Results of Parametric Empirical Bayes (PEB) analyses assessing evidence for a relationship between the posterior distribution (mean and variance) for 
individual-level model parameter estimates and the latent factor underlying covariance across the cluster of parieto-occipital ERPs. Group-level posterior means and 
95% Bayesian confidence intervals are displayed for each parameter such that the direction (above or below 0) indicates the direction of the relationship (values are 
in logit space). Right: Subsequent post-hoc Pearson correlations with ERPs from each parieto-occipital lead. These are descriptive and were carried out to further 
illustrate relationships detected in the PEB analyses. Note that differences between PEB results and these zero-order correlations are accounted for by covariates 
included in the PEB models as well as by the way in which PEB considers posterior distributions over parameters (i.e., means and variances) as opposed to simply 
using the posterior means as point estimates. For the interested reader, we note that a correlation value of r = .31 or greater corresponds to an uncorrected sig
nificance level of p < .05. 

Fig. 9. Left: Results of Parametric Empirical Bayes (PEB) analyses assessing evidence for a relationship between the posterior distribution (mean and variance) for 
individual-level model parameter estimates and the latent factor underlying covariance across the cluster of frontal ERPs. Group-level posterior means and 95% 
Bayesian confidence intervals are displayed for each parameter such that the direction (above or below 0) indicates the direction of the relationship (values are in 
logit space). Right: Subsequent post-hoc Pearson correlations with ERPs from each frontal lead. These are descriptive and were carried out to further illustrate 
relationships detected in the PEB analyses. Note that differences between PEB results and these zero-order correlations are accounted for by covariates included in the 
PEB models as well as by the way in which PEB considers posterior distributions over parameters (i.e., means and variances) as opposed to simply using the posterior 
means as point estimates. For the interested reader, we note that a correlation value of r = .31 or greater corresponds to an uncorrected significance level of p < .05. 
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relationships between model parameters and the latent parieto-occipital 
response factor in the early (100− 176 ms) time window provided very 
strong evidence for a positive association with IP (posterior probability 
[pp] = 1; see Fig. 8) and some evidence for associations with pV (positive 
relationship; pp = .78) and IPdiff (negative relationship; pp = .70). Fig. 8 
also shows subsequent post-hoc correlations illustrating that IP and IPdiff 
showed consistently positive and negative relationships (respectively) 
across several parieto-occipital leads. Consistent (but weaker) positive 
associations were also present with pV across leads. Note here that the 
differences between PEB results and these zero-order correlations are 
accounted for by included covariates as well as the way in which PEB 
considers posterior distributions over parameters (i.e., means and vari
ances) as opposed to simply using the posterior means as point 
estimates. 

The winning model within PEB analyses testing for relationships 
between model parameters and the latent parieto-occipital response 
factor in the later (300− 600 ms) time window provided very strong 
evidence for positive associations with IP (see Fig. 8; pp = 1) and 
negative associations with IPdiff (pp = .99), consistent with the strong 
positive and negative relationships (respectively) across the several 
parieto-occipital leads also shown in Fig. 8. 

3.6. Frontal ERPs 

The winning model within PEB analyses testing for relationships 
between model parameters and the latent frontal response factor in the 
early (100− 176 ms) time window provided strong evidence for a posi
tive association with IP (see Fig. 9; pp = .96). As also depicted in Fig. 9, 
IP showed a consistently positive (but weak) association across several 
frontal leads. The winning model within PEB analyses testing for re
lationships between model parameters and the latent frontal response 
factor in the latter (300− 600 ms) time window provided positive evi
dence for a negative association with pV (see Fig. 9; pp = .89) and strong 
evidence for a positive association with ηnv (pp = .98). There was also 
some evidence for a positive association with IPdiff (pp = .78). As shown 
in Fig. 9, this pattern of relationships was present across several frontal 
leads. 

3.7. Exploratory analyses of peripheral physiology 

As we had no specific hypotheses regarding the EGG signal, we ran 
exploratory correlation analyses between EGG power and model pa
rameters. While no associations were found between EGG and model 
parameters at baseline or during the enhanced block, there were sig
nificant correlations with EGG total power in the normal block for both 
IP (r(40) = -0.43, p = .006, BF = 9.8) and pV (r(40) = .41, p = .009, BF =
6.8). Subsequent analyses suggested that the relationship with IP was 
driven by all frequency bands (rs(40) = -0.3 to -.44, ps = .005–.06, BFs =
1.7–12.3), while the relationship with pV was driven primarily by the 
normogastria frequency band (r(40) = .42, p = .007, BF = 8.8; see 
Supplementary Figure S4). Skin conductance responses (maximum 
phasic response values) to vibrations across the task showed a positive 
association with IP (r(40) = .40, p = .01, BF = 6.7), and heart rate re
sponses to vibrations across the task showed a positive association with 
ηv (r(40) = .34, p = .01, BF = 2.7). No associations were found with 
average heart rate. These relationships showed a similar pattern when 
analyzing the normal and enhanced blocks separately (see Supple
mentary Figure S4). 

3.8. Block order effects 

Because our results suggested that block order had an influence on 
parameter values, we ran supplementary analyses to examine whether 
the relationships between parameters and ERP results might also show 
different patterns. Supplementary Figures S5-S6 show correlation 
matrices examining these relationships for each block order separately. 

While many relationships were qualitatively similar, some suggestive 
differences were present (while noting the reduced sample size in each 
sub-group and resulting reduction in the stability/reliability of these 
correlations). For example, it was notable in both time windows that pV 
showed a pattern of positive relationships with parieto-occipital ERPs 
when the normal block was presented first, while there was a pattern of 
negative relationships when the enhanced block was presented first 
(which may have led these effects to cancel out somewhat across all 
participants). The relationship between frontal ERPs and IP in the early 
time window also appeared to be driven by individuals who received the 
normal-strength stimulation block first. 

4. Discussion 

In this study we demonstrate a novel method for assessing individual 
differences in gastrointestinal interoception. This method combines 1) a 
noninvasive mechanosensory paradigm for measuring gut sensations 
(Mayeli et al., 2021) with 2) a Bayesian computational modelling 
approach for analyzing task behavior previously developed for studying 
cardiac interoception (Smith, Kuplicki, Feinstein et al., 2020; Smith, 
Kuplicki, Teed et al., 2020). However, unlike most cardiac interoception 
tasks, because the capsule vibration signal strength and timing could be 
precisely controlled, Bayesian modelling was able to estimate additional 
parameters when characterizing the belief updating underlying 
behavior. This included not only sensory precision and prior expecta
tions, but also learning rates and changes in precision with different 
signal strengths. In other words, our modelling approach could identify 
individual differences in how prior beliefs evolve over time during the 
task and how these interact with internal estimates of the reliability of 
afferent GI signals. 

Correlations with model-free measures of task behavior confirmed 
that model parameters tracked consistent patterns in behavior (e.g., 
higher precision with higher accuracy, stronger priors with higher 
numbers of false positives), but that each parameter accounted for 
different behavioral patterns to different degrees. Several model pa
rameters were also strongly correlated with reaction times in anticipated 
directions (e.g., higher precision was associated with faster reaction 
times, suggesting a faster perceptual evidence accumulation rate). 
Because the model was not fit to reaction times, this provides stronger 
support for parameter construct validity than the relationships with 
accuracy. The model was also validated by self-report measures, where 
higher precision and faster learning rate (from felt vibrations) both 
correlated with greater self-perceived task performance (i.e., lower 
perceived difficulty and higher confidence). 

Interestingly, those who received the enhanced block first showed a 
greater decrease in interoceptive precision in the normal block, which 
could indicate that they came to expect a more precise signal in the 
enhanced block – thereby reducing confidence when subsequently 
feeling the weaker signal in the normal block. This dynamic was not 
facilitated by the reverse ordering, suggesting that providing the 
enhanced block first may be a more sensitive approach to detecting 
certain individual differences. Future studies could capitalize on this 
effect by choosing an ordering most sensitive to individual differences in 
parameters of greatest interest, similar to the way auditory stimulus 
ordering has been used to build up prior expectations that promote 
perceptual illusions or ‘hallucinated stimuli’ in psychosis research 
(Powers, Mathys, & Corlett, 2017). In our supplementary analyses, for 
example, there were hints that presenting the enhanced vs. normal block 
first elicited distinct patterns of relationships between prior expectations 
and a number of EEG responses (e.g., positive relationships between pV 
and several parieto-occipital electrodes with normal-first, but negative 
relationships with enhanced-first). 

As an additional validation, we then examined predicted relation
ships with event-related potentials (ERPs). The neural process theory 
associated with active inference models (from which our Bayesian 
model was derived; (Friston, FitzGerald et al., 2016, 2017; Parr & 
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Friston, 2018; Smith, Friston et al., 2021)) postulates that firing rates in 
specific neuronal populations encode the strength of belief in one 
perceptual interpretation vs. another (here, the interpretation that a 
vibration state was or was not present). The rate of change in firing rates 
(corresponding to rate of change in beliefs or speed of evidence accu
mulation) should consequently generate stronger ERPs. The neural 
process theory also postulates that deeper levels in a neural hierarchy 
provide perceptual processing with prior expectations, and that changes 
in these expectations (and associated learning rates) operate over slower 
timescales. This motivated our hypotheses that higher interoceptive 
precision should correspond to stronger ERPs in perceptual (i.e., 
parieto-occipital) regions and that stronger prior expectations to feel a 
vibration (and a slower decay in these expectations; i.e., both promoting 
less surprise) should dampen ERPs in higher frontal regions. These as
sociations would also be expected within the closely related theory of 
predictive coding (Bogacz, 2017), which describes perceptual inference 
as a process of updating beliefs to minimize precision-weighted pre
diction errors – where higher sensory precision amplifies prediction 
errors (and therefore ERPs), while stronger (more precise) prior beliefs 
downweight prediction errors (dampening ERPs). Consistent with our 
predictions and the hypothesized link between precision, belief updat
ing, and ERPs, the Bayesian analyses and post-hoc correlations 
confirmed that several parieto-occipital electrodes showed stronger re
sponses to capsule vibrations with higher sensory precision. Further, 
several frontal electrodes showed dampened responses with more pre
cise prior expectations and in individuals who showed a slower rate of 
decay in those prior expectations (i.e., slower learning rate from the 
absence of a vibration). Interestingly, the association between frontal 
regions and prior expectations and learning rates was only present at the 
later (300− 600 ms) time window – consistent with the idea that learning 
occurs over slower time scales than perception (Bogacz, 2017; Friston, 
FitzGerald et al., 2016; Kiebel et al., 2008; Murray et al., 2014). These 
results each provide additional support for the hypothesis that prior 
expectations, and their evolution over time, are associated with deeper 
(frontal) levels in a processing hierarchy. It also provides empirical 
support for the postulated relationship between belief updating and 
ERPs in active inference (Friston, Parr et al., 2017; Parr, Markovic, 
Kiebel, & Friston, 2019; Smith, Friston et al., 2021). 

We also explored whether computational model parameters might 
show relationships with peripheral electrophysiological patterns asso
ciated with skin conductance, heart rate, and stomach activity (EGG 
signal). We found that phasic skin conductance changes (indexing 
evoked autonomic activity) were positively associated with interocep
tive precision, consistent with the notion that signals are more surprising 
(i.e., they lead to greater belief updating) when they are believed to be 
precise. We further found that those who learned faster in response to 
vibrations showed greater heart rate changes in response to each vi
bration. This latter finding appears consistent with theories of arousal- 
facilitated learning (e.g., see (Mather, Clewett, Sakaki, & Harley, 
2015)), but we stress that these results are preliminary and strong 
interpretation will not be warranted until they are replicated in future 
work. 

Finally, we found that both prior beliefs and interoceptive precision 
were associated with EGG signals during periods of normal (but not 
enhanced) vibration strength. Because the baseline (pre-task) EGG 
signal was not associated with these parameters, it could be argued that 
capsule vibration may have influenced stomach activity in a manner that 
depended on differences in prior beliefs and beliefs about the precision 
of the afferent signal (i.e., suggesting an effect that could also be 
perceptually mediated). However, our prior report (Mayeli et al., 2021) 
found no change in EGG from baseline to normal vibration periods at the 
group level. With this in mind, our results could suggest that the pres
ence of the afferent signal may have led to increases in EGG power from 
baseline in those whose vibration percepts were more strongly driven by 
prior beliefs (i.e., under-constrained by the afferent signal), while 
greater sensitivity to the afferent signal instead promoted reductions in 

EGG power from baseline. One possible reason why this relationship 
may have been absent in the enhanced vibration block is a ceiling effect. 
Specifically, performance was quite high (and less variable) on average 
in this block, suggesting that the signal may have been too precise – 
potentially leading to a reduced sensitivity to detect individual differ
ences that manifest primarily at weaker signal strengths. The precise 
functional significance and correct causal interpretation of the rela
tionship between EGG and priors/precision is unclear, and we do not 
interpret it further. However, future studies might examine the degree to 
which this individual difference indicator could illuminate perceptual 
processing in specific groups of individuals, such as in clinical pop
ulations characterized by faulty inferences about body states and 
symptoms (Van den Bergh, Witthoft, Petersen, & Brown, 2017). For 
example, abnormal predictions about body sensations (including 
bloating, cramping, fullness, or hunger) are considered to play a role in 
conditions such as eating disorders (Bernardoni et al., 2018; Frank, 
Collier, Shott, & O’Reilly, 2016; Kaye, Fudge, & Paulus, 2009; Khalsa 
et al., 2015), somatic symptom disorders (Barsky, Peekna, & Borus, 
2001; Flasinski et al., 2020), functional neurological disorders (Drane 
et al., 2020; Edwards et al., 2012; Espay et al., 2018), and functional 
bowel disorders (Kwan et al., 2005; Simren et al., 2018; Smith, Gudleski, 
Lane, & Lackner, 2019; Tillisch & Mayer, 2005). 

Here it is also worth considering how our results might build on 
previous interoception research involving other GI stimulation methods, 
many of which have focused on the esophagus and colon. For example, 
one common method for assessing GI interoception is electrical stimu
lation of the esophagus (Frieling, Enck, & Wienbeck, 1989). Consistent 
with our computational framework, studies using this approach have 
found that the amplitude of cortical evoked potentials decreases with an 
increasing number of stimulations – as would be expected if the brain 
builds up prior expectations for the presentation of a stimulus over time 
(Frieling et al., 1989; Frobert et al., 1994; Frobert, Arendt-Nielsen, Bak, 
Funch-Jensen, & Bagger, 1995; Sollenbohmer, Enck, Haussinger, & 
Frieling, 1996; Tougas, Hudoba, Fitzpatrick, Hunt, & Upton, 1993). This 
same dynamic would also be predicted by our model if ERPs were 
assessed on a vibration-by-vibration basis, which will be an important 
future direction (for related EEG studies of esophageal stimulation using 
balloon distention, see (Castell, Wood, Frieling, Wright, & Vieth, 1990; 
Smout, DeVore, Dalton, & Castell, 1992; Weusten, Franssen, Wieneke, & 
Smout, 1994)). Another widely used approach has been stimulation of 
the sigmoid colon, using either electrical- or balloon distension-based 
stimuli. This approach has previously been used to show how detec
tion of colon stimulation can be dissociated from reportable sensations 
in common psychophysics and forced-choice paradigms (Holzl, Eras
mus, & Moltner, 1996). While not done here, our paradigm could allow 
the possibility of assessing similar phenomena for stomach sensations 
(and their neurocomputational basis) by considering vibration periods 
where individuals do vs. do not report a sensation. These esophageal and 
colon stimulation studies have implicated somatosensory, insula, and 
cingulate brain regions consistent with the correlates of our prior 
expectation and learning rate parameters (for a review, see (Aziz & 
Thompson, 1998)), while more recent work has also characterized a 
“gastric network” including posterior parietal regions consistent with 
correlates of our interoceptive sensory precision parameters (Rebollo, 
Devauchelle, Beranger, & Tallon-Baudry, 2018). It will be important for 
future research to further disentangle how computational mechanisms 
relate to this prior body of work. 

Our computational modelling approach to this task is not without 
limitations. While model parameters were recoverable, and model 
comparison supported our model as having the most evidence, other 
generative models might have been considered (e.g., the Hierarchical 
Gaussian Filter; (Mathys et al., 2014)). Our approach also requires a 
choice of how to discretize time (e.g., where we here considered each 
3-second period as a “trial”). Our choice was based on the length of 
vibration intervals, but other discretization schemes might have been 
used. The task is also novel, with a number of limitations in 
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interpretability described in more detail in our prior report (e.g., the 
specific molecular signal transduction mechanisms and afferent 
neuronal pathways by which the vibration signal reaches the brain are 
unclear; (Mayeli et al., 2021)). Our sample size was also relatively small 
by modern standards and provided limited power to detect significant 
relationships in our exploratory correlation analyses (e.g., in Fig. 5). The 
exploratory nature of several of our correlational analyses also entails 
that – beyond their use as validating the novel method we have 
described – they should be considered primarily as hypothesis gener
ating. Future studies with larger samples and strong a priori hypotheses 
will therefore be necessary to confirm the patterns of relationships we 
observed. Finally, our selection of ERP time windows was based mainly 
on initial visible inspection of the ERP waveform (and based on differ
ences between ERPs evoked by the normal vs. enhanced conditions 
described in our prior report; see (Mayeli et al., 2021)). Future studies 
might examine other time windows and could benefit from more so
phisticated means of time window selection. 

With these limitations in mind, our paradigm also has important 
strengths that merit its use in further work. Namely, unlike traditional 
cardiac perception tasks, the timing and strength of the interoceptive 
signal can be precisely controlled, without resorting to invasive means. 
The mechanosensory means of stimulation taps into a clinically signif
icant interoceptive modality (‘gut feelings’ within the GI system) that 
has been understudied in the psychological literature due to the inac
cessibility of the body’s interior. This method allows for fast, repeatable 
GI stimulations (unlike other measures of GI interoception; e.g., water 
loading (van Dyck et al., 2016)) and consequently affords more so
phisticated analyses. Namely, it lends itself to computational modelling 
approaches such as those used here that treat perception as Bayesian 
inference and that afford estimation of individual differences in a 
number of information processing mechanisms (i.e., here, five distinct 
computational parameters). However, it should be acknowledged that, 
while offering these methodological advantages, our mechanosensory 
paradigm was not designed to simulate naturalistic states of the GI 
system. It remains an open question whether individual differences in 
the ability to detect vibratory stimulation will generalize to differences 
in the perception of naturally occurring GI states. 

In conclusion, this foundational work establishes the predictive and 
face validity of applying a novel computational modelling approach to a 
recent interoceptive paradigm for understanding gut sensation, which 
affords a quantitative phenotyping of individual participants in terms of 
their sensitivity to – and subsequent inferences about – interoceptive 
states. By using Bayesian belief updating to explain both behavioral and 
physiological responses, we were able to quantify the way that partici
pants infer and learn about their gut feelings. This provides a unique 
opportunity to evaluate how the human brain infers gastrointestinal 
states, paving the way for future studies assessing the predictive value of 
the individual differences revealed by our approach in clinical pop
ulations, especially those in which gastrointestinal symptoms are 
prominent. 

Software note 

All computational modelling was implemented using standard rou
tines (spm_MDP_VB_X.m) that are available as Matlab code in the latest 
version of SPM academic software: http://www.fil.ion.ucl.ac.uk/spm/. 
The specific scripts used for our model can be found at https://github.co 
m/rssmith33/Gut-Inference-Model-Scripts. Note that SPM must be 
installed in Matlab to run these scripts. 
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